OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 7005–7010

Resonance-induced wave penetration through electromagnetic opaque object

He Wen, Bo Hou, Yang Leng, and Weijia Wen  »View Author Affiliations

Optics Express, Vol. 13, Issue 18, pp. 7005-7010 (2005)

View Full Text Article

Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The enhanced transmission of electromagnetic waves through an opaque object is reported in this paper. The samples are constructed as two different configurations: a subwavelength metallic mesh sandwiched either between two metallic plates with periodic fractal slots (ABA for short) or between two plastic plates with periodic metallic fractals (CBC for short). Such ABA or CBC configuration exhibits multiple transmission peaks, indicating the wave penetrations through the opaque metallic mesh. The experimental observations and theoretical simulations demonstrate that the transmission enhancements for two configurations are induced by local resonances in the sandwiching layers.

© 2005 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials
(260.5740) Physical optics : Resonance
(350.4010) Other areas of optics : Microwaves

ToC Category:
Research Papers

Original Manuscript: July 26, 2005
Revised Manuscript: August 24, 2005
Published: September 5, 2005

He Wen, Bo Hou, Yang Leng, and Weijia Wen, "Resonance-induced wave penetration through electromagnetic opaque object," Opt. Express 13, 7005-7010 (2005)

Sort:  Journal  |  Reset


  1. V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of ε and μ,�?? Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, �??Extremely low frequency plasmons in metallic mesostructures,�?? Phys. Rev. Lett. 76, 4773 (1996). [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena,�?? IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, �??A composite medium with simultaneously negative permeability and permittivity,�?? Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction,�?? Science 292, 77 (2001). [CrossRef]
  6. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, �??Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,�?? Appl. Phys. Lett. 78, 489 (2001). [CrossRef]
  7. �??Focus Issue: Negative Refraction and Metamaterials,�?? Opt. Express 11, 639-755 (2003).
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through subwavelength hole arrays,�?? Nature (London) 391, 667 (1998). [CrossRef]
  9. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, �??Control of optical transmission through metals perforated with subwavelength hole arrays,�?? Opt. Lett. 24, 256 (1999).
  10. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, �??Enhanced light transmission through a single subwavelength aperture,�?? Opt. Lett. 26, 1972 (2001).
  11. �??Focus Issue: Extraordinary Light Transmission Through Sub-Wavelength Structured Surfaces,�?? Opt. Express 12, 3618-3893 (2003). [CrossRef]
  12. Y. Takakura, �??Optical resonance in a narrow slit in a thick metallic screen,�?? Phys. Rev. Lett. 86, 5601 (2001). [CrossRef]
  13. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, �??Selective transmission through very deep zero-order metallic gratings at microwave frequencies,�?? Appl. Phys. Lett. 77, 2789 (2000). [CrossRef]
  14. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, �??Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,�?? Phys. Rev. Lett. 94, 243905 (2005). [CrossRef]
  15. W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, �??Subwavelength photonic band gaps from planar fractals,�?? Phys. Rev. Lett. 89, 223901 (2002). [CrossRef]
  16. B. Hou, G. Xu, and W. Wen, �??Tunable band gap properties of planar metallic fractals,�?? J. Appl. Phys. 95, 3231 (2004). [CrossRef]
  17. W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, �??Infrared passbands from fractal slit patterns on a metal plate,�?? Appl. Phys. Lett. 83, 2106 (2003). [CrossRef]
  18. Simulations were performed using the package CONCERTO 3.5, developed by Vector Fields Limited, England, 2004.
  19. B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited