OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 7076–7085

Self-collimation of light in three-dimensional photonic crystals

R. Iliew, C. Etrich, and F. Lederer  »View Author Affiliations

Optics Express, Vol. 13, Issue 18, pp. 7076-7085 (2005)

View Full Text Article

Acrobat PDF (1003 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We calculate three-dimensional (3D) dispersion relations of woodpile and inverse opal photonic crystals. Inspecting the iso-frequency surfaces of the four lowest-order bands at appropriate frequencies we identify regions where self-collimation of light may be expected. These predictions are verified by means of finite-difference time-domain calculations both for high- and low-index photonic crystals.

© 2005 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

Original Manuscript: July 21, 2005
Revised Manuscript: August 26, 2005
Published: September 5, 2005

R. Iliew, C. Etrich, and F. Lederer, "Self-collimation of light in three-dimensional photonic crystals," Opt. Express 13, 7076-7085 (2005)

Sort:  Journal  |  Reset


  1. H. S. Sözüer, J. W. Haus, and R. Inguva, �??Photonic bands: Convergence problems with the plane-wave method,�?? Phys. Rev. B 45, 13962�??13972 (1992). [CrossRef]
  2. K. Busch and S. John, �??Photonic band gap formation in certain self-organizing systems,�?? Phys. Rev. E 58, 3896�??3908 (1998). [CrossRef]
  3. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, �??On-chip natural assembly of silicon photonic bandgap crystals,�?? Nature 414, 289�??293 (2001). [CrossRef]
  4. H. S. Sözüer and J. P. Dowling, �??Photonic band calculations for woodpile structures,�?? J. Mod. Opt. 41, 231�??239 (1994).
  5. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, �??Photonic Band Gaps in Three Dimensions: New Layer-by-Layer Periodic Structures,�?? Sol. State. Comm. 89, 413�??416 (1994). [CrossRef]
  6. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, �??A three-dimensional photonic crystal operating at infrared wavelengths,�?? Nature 394, 251�??253 (1998). [CrossRef]
  7. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, �??Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,�?? Science 289, 604�??606 (2000). [CrossRef]
  8. R. Zengerle, �??Light propagation in singly and doubly periodic planar waveguides,�?? J. Mod. Opt. 34, 1589�??1617 (1987).
  9. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Self-collimating phenomena in photonic crystals,�?? Appl. Phys. Lett. 74, 1212�??1214 (1999). [CrossRef]
  10. D. N. Chigrin, S. Enoch, C. M. S. Torres, and G. Tayeb, �??Self-guiding in two-dimensional photonic crystals,�?? Opt. Express 11, 1203�??1211 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1203">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1203</a>
  11. D. N. Chigrin, �??Radiation pattern of a classical dipole in a photonic crystal: Photon focusing,�?? Phys. Rev. E 70, 056 611 (2004).
  12. D.W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, �??Dispersion-based optical routing in photonic crystals,�?? Opt. Lett. 29, 50�??52 (2004). [CrossRef]
  13. R. Iliew, C. Etrich, U. Peschel, F. Lederer, M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, and A. Tünnermann, �??Diffractionless propagation of light in a low-index photonic-crystal film,�?? Appl. Phys. Lett. 85, 5854�??5856 (2004). [CrossRef]
  14. T. Baba and T. Matsumoto, �??Resolution of photonic crystal superprism,�?? Appl. Phys. Lett. 81, 2325�??2327 (2002). [CrossRef]
  15. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. E 58, R10 096 (1998).
  16. P. S. J. Russell, �??Novel thick-grating beam-squeezing device in Ta2O5 corrugated planar waveguide,�?? Electron. Lett. 20, 72�??73 (1984). [CrossRef]
  17. M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62, 10 696 (2000).
  18. S. Foteinopoulou and C. M. Soukoulis, �??Negative refraction and left-handed behavior in two-dimensional photonic crystals,�?? Phys. Rev. B 67, 235 107 (2003).
  19. J. Mizuguchi, Y. Tanaka, S. Tamura, and M. Notomi, �??Focusing of light in a three-dimensional cubic photonic crystal,�?? Phys. Rev. B 67, 075 109 (2003).
  20. C. Luo, S. G. Johnson, and J. D. Joannopoulos, �??All-angle negative refraction in a three-dimensionally periodic photonic crystal,�?? Appl. Phys. Lett. 81, 2352�??2354 (2002). [CrossRef]
  21. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
  22. J. Ward, J. B. Pendry, and W. J. Stewart, �??Photonic dispersion surfaces,�?? J. Phys. Condens. Matter 7, 2217�??2224 (1995). [CrossRef]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000)
  24. J. Serbin, A. Ovsianikov, and B. Chichkov, �??Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,�?? Opt. Express 12, 5221�??5228 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5221">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5221</a> [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2409 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited