OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 7145–7159

Slow-light, band-edge waveguides for tunable time delays

M. Povinelli, Steven Johnson, and J. Joannopoulos  »View Author Affiliations


Optics Express, Vol. 13, Issue 18, pp. 7145-7159 (2005)
http://dx.doi.org/10.1364/OPEX.13.007145


View Full Text Article

Acrobat PDF (265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Research Papers

History
Original Manuscript: July 6, 2005
Revised Manuscript: August 26, 2005
Published: September 5, 2005

Citation
M. Povinelli, Steven Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7145


Sort:  Journal  |  Reset

References

  1. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, �??Optical delay lines based on optical filters,�?? IEEE J. Quantum Electron. 37, 525�??532 (2001). [CrossRef]
  2. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic Press, London, 1998).
  3. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. LeGrange, and S. S. Patel, �??Integrated resonance-enhanced variable delay lines,�?? IEEE Photonics Technol. Lett. 17, 834�??6 (2005). [CrossRef]
  4. Z. Wang and S. Fan, �??Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,�?? Phys. Rev. E 68, 066,616 (2003).
  5. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711�??713 (1999).
  6. S. Mookherjea and A. Yariv, �??Coupled Resonator Optical Waveguides,�?? IEEE J. Sel. Top. Quantum Electron. 8, 448�??456 (2002).
  7. J. Liu, B. Shi, D. Zhao, and X. Wang, �??Optical delay in defective photonic bandgap structures,�?? J. Opt. A.: Pure Appl. Opt. 4, 636�??639 (2002). [CrossRef]
  8. S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, �??Optical characterization of photonic crystal delay lines based on one-dimensional coupled defects,�?? Opt. Lett. 27, 2079�??2081 (2004).
  9. H. Altug and J. Vu�?kovi�?, �??Two-dimensional coupled photonic crystal resonator arrays,�?? Appl. Phys. Lett. 84, 161�??163 (2004). [CrossRef]
  10. H. Altug and J. Vu�?kovi�?, �??Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,�?? Appl. Phys. Lett. 86, 111,102 (2005).
  11. M. F. Yanik and S. Fan, �??Stopping light all optically,�?? Phys. Rev. Lett. 92, 083,901 (2004).
  12. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, �??Stopping Light in a Waveguide with an All-Optical Analog of Electromagnetically Induced Transparency,�?? Phys. Rev. Lett. 93, 233,903 (2004).
  13. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, �??Coupled-resonator-induced transparency,�?? Phys. Rev. A 69, 063,804 (2004).
  14. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, and R. P. Leavitt, �??Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss,�?? Phys. Rev. E 54(2), R1078�??1081 (1996). [CrossRef]
  15. D. Mori and T. Baba, �??Dispersion-contolled optical group delay device by chirped photonic crystal waveguides,�?? Appl. Phys. Lett. 85, 1101�??1103 (2004). [CrossRef]
  16. J. D. Joannopoulos, R. D. Meade, and J. N.Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  17. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, �??Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,�?? Phys. Rev. E 66, 066,608 (2002).
  18. M. I. Skolnik, Introduction to Radar Systems, chap. 11.5 (McGraw-Hill, 1980).
  19. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, �??Optical waveguides with apodized sidewall gratings via spatial-phase locked electron-beam lithography,�?? J. Vac. Sci. Technol. B 20, 2753�??2757 (2002). [CrossRef]
  20. G. E. Jellison and H. H. Burke, �??The temperature depdendence of the refractive index of silicon at elevated temperatures at several laser wavelengths,�?? J. Appl. Phys. 60, 841�??843 (1986). [CrossRef]
  21. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
  22. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143�??145 (1997). [CrossRef]
  23. S. G. Johnson, M. L. Povinelli, P. Bienstman, M. Skorobogatiy, M. Solja�?i�?, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, �??Coupling, scattering and perturbation theory: Semi-analytical analyses of photonic-crystal waveguides,�?? in Proc. 2003 5th Intl. Conf. on Transparent Optical Networks and 2nd Eur opean Symp. on Photonic Crystals, vol. 1, pp. 103�??109 (2003).
  24. N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, �??Dispersion of Cascaded Fiber Gratings in WDM Lightwave Systems,�?? J. Lightwave Technol. 16, 1523�??9 (1998). [CrossRef]
  25. M. Solja�?i�?, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, �??Enhancement of microcavity lifetimes using highly dispersive materials,�?? Phys. Rev. E 71, 026602 (2005). [CrossRef]
  26. M. Skorobogatiy, G. Bégin, and A. Talneau, �??Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,�?? Opt. Express 13, 2487�??2502 (2005). [CrossRef]
  27. M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Solja�?i�?, �??Effect of a photonic bandgap on scattering from waveguide disorder,�?? Appl. Phys. Lett. 84, 3639�??3641 (2004). [CrossRef]
  28. S. G. Johnson, M. L. Povinelli, M. Solja�?i�?, A. Karalis, S. Jacobs, and J. D. Joannopoulos, �??Roughness losses and volume-current methods in photonic-crystal waveguides,�?? J. Appl. Phys. B 81(2�??3), 283�??293 (2005).
  29. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, �??Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,�?? Phys. Rev. Lett. 94, 033,903 (2005).
  30. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, �??Waveguides, resonators, and their coupled elements in photonic crystal slabs,�?? Opt. Express 12, 1551�??1561 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551</a>. [CrossRef]
  31. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, �??Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,�?? Opt. Lett. 26, 1888�??1890 (2001).
  32. F. Grillot, L. Vivien, S. Laval, S. Pascal, and E. Cassan, �??Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides,�?? IEEE Photonics Technol. Lett. 16, 1661�??1663 (2004). [CrossRef]
  33. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, �??Fine-tuned high-Q photonic-crystal nanocavity,�?? Opt. Express 13, 1202�??1214 (2005). [CrossRef]
  34. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, �??Ultrahigh-quality-factor silicon-on-insulator microring resonator,�?? Opt. Lett. 29, 2861�??2863 (2004). [CrossRef]
  35. S. J. Spector, M. W. Geis, and T. Lyszczarz. Private communication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited