OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 7174–7188

Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency

M. Tinker and J-B. Lee  »View Author Affiliations


Optics Express, Vol. 13, Issue 18, pp. 7174-7188 (2005)
http://dx.doi.org/10.1364/OPEX.13.007174


View Full Text Article

Acrobat PDF (1884 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultra-compact device geometries requiring the development of new device technologies are essential for the successful implementation of active devices within photonic crystal systems. The basic operation of an ultra-compact silicon-based photonic crystal light modulator actuated by the thermo-optic modulation of the cut-off frequency about the telecommunication wavelength is discussed. A device design using highly localized high temperature resistive heating of heavily doped heating elements situated directly parallel to the photonic crystal light modulator was developed and evaluated using finite difference time domain and finite element analysis. These devices exhibited high extinction ratios and low insertion losses over a 40 nm frequency band around the telecommunication wavelength of 1550 nm with response times on the order of a few to several microseconds. The reliability implications of using these types of devices are discussed.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.4110) Optical devices : Modulators
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Research Papers

History
Original Manuscript: July 14, 2005
Revised Manuscript: August 29, 2005
Published: September 5, 2005

Citation
M. Tinker and J-B. Lee, "Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency," Opt. Express 13, 7174-7188 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7174


Sort:  Journal  |  Reset

References

  1. Y. A. Vlasov, N. Moll, and S. J. McNab, �??Mode mixing in asymmetric double-trench photonic crystal waveguides,�?? J. Appl. Phys. 95, 4538-4544 (2004). [CrossRef]
  2. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, �??Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,�?? IEEE J. Quantum Electron. 38, 736-742 (2002). [CrossRef]
  3. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, �??Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-µm wavelength,�?? Opt. Lett. 25, 1297-1299 (2000).
  4. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-1939 (2000). [CrossRef]
  5. T. F. Krauss, �??Planar photonic crystal waveguide devices for integrated optics,�?? Phys. Status Solidi A, 197, 688-702 (2003).
  6. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,�?? Opt. Lett. 27, 388-390 (2002).
  7. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, �??Low-loss, wide-angle Y splitter at ~1.6-µm wavelengths built with a two-dimensional photonic crystal,�?? Opt. Lett. 27, 1400-1402 (2002).
  8. Y. A. Vlasov and S. J. McNab, �??Losses in single-mode silicon-on-insulator strip waveguides and bends,�?? Opt. Express 12, 1622-1631 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622</a> [CrossRef]
  9. Y. A. Vlasov and S. J. McNab, �??Waveguiding in silicon-on-insulator photonic crystal and single-mode strip waveguides,�?? in 2004 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 809-810 Vol 2.
  10. R. M. De La Rue, �??Photonic crystals and photonic wires for a nanophotonic future?,�?? in Proceedings of 2004 6th International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 282-284, Vol 1.
  11. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, �??Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,�?? J. Lightwave Technol. 23, 401-412 (2005). [CrossRef]
  12. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, �??Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,�?? IEEE J. Quantum Electron. 41, 657-665 (2005). [CrossRef]
  13. F. Du, Y.-Q. Lu, and S.-T. Wu, �??Electrically tunable liquid-crystal photonic crystal fiber,�?? Appl. Phys. Lett. 85, 2181-2183 (2004). [CrossRef]
  14. C.-Y. Liu and L.-W. Chen, �??Tunable photonic crystal waveguide coupler with nematic liquid crystals,�?? IEEE Photonics Technol. Lett. 16, 1849-1851 (2004). [CrossRef]
  15. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, �??Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,�?? IEEE Photonics Technol. Lett. 16, 2514-2516 (2004). [CrossRef]
  16. E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, �??2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,�?? Opt. Express 12, 588-592 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-588">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-588</a> [CrossRef]
  17. H. M. H. Chong, and R. M. De La Rue, �??Tuning of photonic crystal waveguide microcavity by thermooptic effect,�?? IEEE Photonics Technol. Lett. 16, 1528-1530 (2004). [CrossRef]
  18. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,�?? J. Appl. Phys.. 91, 922-929 (2002). [CrossRef]
  19. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, New York, NY, 2002).
  20. L. Eldada, �??Advances in telecom and datacom optical components,�?? Opt. Eng. 40, 1165-1178, (2001). [CrossRef]
  21. M. Bourouha, M. Bataineh, and M. Guizani, �??Advances in optical switching and networking: past, present, and future,�?? in Proceedings IEEE SoutheastCon 2002 (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 405-413.
  22. G. E. Jellison and H. H. Burke, �??The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,�?? J. Appl. Phys., 60, 841-843 (1986). [CrossRef]
  23. G. Cocorullo and I. Rendina, �??Thermo-optical modulation at 1.5 µm in silicon etalon,�?? Electron. Lett. 28, 83-85 (1992). [CrossRef]
  24. F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, �??Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,�?? J. Appl. Phys. 88, 7115-7119, (2000). [CrossRef]
  25. G. Cocorullo, F. G. Della Corte, and I. Rendina, �??Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,�?? Appl. Phys. Lett. 74, 3338-3340, (1999). [CrossRef]
  26. G. Ghosh, �??Temperature dispersion of refractive indices in crystalline and amorphous silicon,�?? Appl. Phys. Lett. 66, 3570-3572, (1995). [CrossRef]
  27. H. H. Li, �??Refractive index of silicon and germanium and its wavelength and temperature derivatives,�?? J. Phys. Chem. Ref. Data 9, 561-658 (1980).
  28. M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, �??Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,�?? Opt. Eng. (Bellingham) 42, 169-175 (2003). [CrossRef]
  29. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, �??Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,�?? J. Lightwave Technol. 15, 505-518 (1997). [CrossRef]
  30. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, �??Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 µm,�?? Appl. Phys. Lett. 67, 2448-2449 (1995). [CrossRef]
  31. G. V. Treyz, P. G. May, and J-M. Halbout, �??Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,�?? Appl. Phys. Lett. 59, 771-773 (1991). [CrossRef]
  32. G. V. Treyz, �??Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm,�?? Electron. Lett. 27, 118-120 (1991). [CrossRef]
  33. U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, �??Singlemode optical switches based on SOI waveguides with large cross-section,�?? Electron. Lett. 30, 406-408 (1994). [CrossRef]
  34. M. T. Tinker and J-B. Lee, �??Thermo-optic photonic crystal light modulator,�?? Appl. Phys. Lett. 86, 221111-1-3 (2005). [CrossRef]
  35. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902-1-4 (2001). [CrossRef]
  36. Q.-A. Huang and N. K. S. Lee, �??Analysis and design of polysilicon thermal flexure actuator,�?? J. Micromech. Microeng. 9, 64-70 (1999). [CrossRef]
  37. Q.-A. Huang and N. K. S. Lee, �??Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator,�?? Microsystem Technologies 5, 133-137 (1999). [CrossRef]
  38. L. Que, J.-S. Park, and Y. B. Gianchandani, �??Bent-beam electrothermal actuators -- Part I: Single beam and cascaded devices,�?? J. Microelectromech.Syst. 10, 247-254 (2001). [CrossRef]
  39. F. P. Fehlner, �??Formation of ultrathin oxide films on silicon,�?? J. Electrochem. Soc. 119, 1723-1727 (1972). [CrossRef]
  40. Y. Kamigaki and Y. Itoh, �??Thermal oxidation of silicon in various oxygen partial pressures diluted by nitrogen,�?? J. Appl. Phys. 48, 2891-2896 (1977). [CrossRef]
  41. F. P. Fehlner, �??Low temperature oxidation of metals and semiconductors,�?? J. Electrochem. Soc. 131, 1645-1652 (1984). [CrossRef]
  42. E. A. Taft, �??Thin thermal oxide on silicon,�?? J. Electrochem. Soc. 131, 2460-2461 (1984). [CrossRef]
  43. H. Kahn, R. Ballarini, and A. H. Heuer, �??Dynamic fatigue of silicon,�?? Curr. Opin. Solid State Mater. Sci. 8, 71-76 (2004).
  44. T. Namazu and Y. Isono,, �??High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique,�?? in Proceedings IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 662-665.
  45. T. Namazu and Y. Isono,, �??High-cycle fatigue damage evaluation for micro-nanoscale single crystal silicon under bending and tensile stressing,�?? in 17th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 149-152.
  46. M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla. 1997).
  47. T.-R. Hsu, MEMS & Microsystems: Design and Manufacture (McGraw-Hill Higher Education, New York, 2002).
  48. Properties of Silicon (INSPEC, Institution of Electrical Engineers, London and New York, 1988).
  49. M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, �??Thermal conduction in doped single-crystal silicon films,�?? J. Appl. Phys. 91, 5079-5088 (2002). [CrossRef]
  50. W. C. O�??Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes Publications, Park Ridge, N. J., 1990).
  51. G. T. A. Kovacs, Micromachined Transducers Sourcebook (WCB/McGraw-Hill, New York, 1998).
  52. The Engineering Tool Box, �??Air properties,�?? (2005), <a href= "http://www.engineeringtoolbox.com/air-properties-8_156.html">http://www.engineeringtoolbox.com/air-properties-8_156.html</a>
  53. J. A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention (John Wiley & Sons, New York 1993).
  54. S. J. McNab, N. Moll, and Y. A. Vlasov, �??Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,�?? Opt. Express 11, 2927-2939 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927. </a>
  55. M. Bertolotti, V. Bogdanov, A. Ferrari, A. Jascow, N. Nazorova, A. Pikhtin, and L. Schirone, �??Temperature dependence of the refractive index in semiconductors,�?? J. Opt. Soc. Am. B 7, 918-922 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1780 KB)     
» Media 2: AVI (689 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited