OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 7198–7208

Comprehensive modeling of near-field nano-patterning

Raymond Rumpf and Eric Johnson  »View Author Affiliations


Optics Express, Vol. 13, Issue 18, pp. 7198-7208 (2005)
http://dx.doi.org/10.1364/OPEX.13.007198


View Full Text Article

Acrobat PDF (326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-field nano-patterning greatly simplifies holographic lithography, but deformations in formed structures are potentially severe. A fast and efficient comprehensive model was developed to predict geometry more rigorously. Numerical results show simple intensity-threshold methods do not accurately predict shape or optical behavior. By modeling sources with partial coherence, unpolarized light, and an angular spectrum, it is shown that standard UV lamps can be used to form 3D structures.

© 2005 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(220.3740) Optical design and fabrication : Lithography

ToC Category:
Research Papers

History
Original Manuscript: June 29, 2005
Revised Manuscript: August 1, 2005
Published: September 5, 2005

Citation
Raymond Rumpf and Eric Johnson, "Comprehensive modeling of near-field nano-patterning," Opt. Express 13, 7198-7208 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7198


Sort:  Journal  |  Reset

References

  1. John D. Joannopoulos, Robert D. Meade, Joshua N. Winn, Photonic Crystals, (Princeton University Press, Princeton, New Jersy, 1995).
  2. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003). [CrossRef]
  3. L. Z. Cai, X. L. Yang, Y. R. Wang, �??Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,�?? J. Opt. Soc. Am. A 19, 2238-2244 (2002).
  4. L. Z. Cai, X. L. Yang, Y. R. Wang, �??All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,�?? Opt. Lett. 27(11), 900-902 (2002).
  5. S. Jeon, G. Wiederrecht, J. A. Rogers, �??Photonic systems formed by proximity field nanopatterning,�?? in Proceedings of SPIE Micromachining Technology for Micro-Optics and Nano-Optics III 5720, E. G. Johnson, ed. (SPIE, Bellingham, WA, 2005), pp. 187-195.
  6. R. C. Rumpf, E. G. Johnson, �??Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,�?? J. Opt. Soc. Am. A 21, 1703-1713 (2004). [CrossRef]
  7. R. C. Rumpf, E. G. Johnson, �??Modeling the formation of photonic crystals by holographic lithography,�?? in Proceedings of SPIE Micromachining Technology for Micro-Optics and Nano-Optics III 5720, E. G. Johnson, ed. (SPIE, Bellingham, WA, 2005), pp. 18-26.
  8. S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, �??Improved notch model for resist dissolution in lithography simulation,�?? in Proceedings of SPIE Advances in Resist Technology and Processing XVIII 4345, F. M. Houlihan, ed., 912-920 (2001).
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,�?? J. Opt. Soc. Am. A 12, 1068-1076 (1995).
  10. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, �??Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,�?? J. Opt. Soc. Am. A 12, 1077-1086 (1995).
  11. F. H. Dill, �??Positive Optical Lithography,�?? Conf. IEEE International Solid-State Circuits, 54-55 (1975).
  12. Y. Shacham-Diamond, �??Modeling of Novolak-Based Positive Photoresist Exposed to KrF Excimer Laser UV Radiation at 248 nm,�?? IEEE Trans. Semiconductor Manufacturing 3(2), 37-44 (1990).
  13. Z. Ling, K. Lian, L. Jian, �??Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,�?? in Proceedings of SPIE Advances in Resist Technology and Processing XVII, 1019-1027 (2000).
  14. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, (Cambridge University Press, New York, New York, 1999).
  15. �??The SU-8 photoresist for MEMS,�?? <a href="http://aveclafaux.freeservers.com/SU-8.html."> http://aveclafaux.freeservers.com/SU-8.html</a>
  16. EXFO Application Note 088, �??High Power UV Light Sources,�?? (EXFO, 2005) <a href="http://www.exfo-uv.com/App_Notes/High_Power_UV_Light_Sources.pdf."> http://www.exfo-uv.com/App_Notes/High_Power_UV_Light_Sources.pdf.</a>
  17. MicroChem Product Data Sheet for SU-8 2007, �??NANOTM SU-8 2000 Negative Tone Photoresist Formulations 2002-2025,�?? (MicroChem, 2005), <a href="http://www.microchem.com/.">http://www.microchem.com/.</a>

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (847 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited