OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 19 — Sep. 19, 2005
  • pp: 7365–7373

A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics

Nikolaos Florous, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations


Optics Express, Vol. 13, Issue 19, pp. 7365-7373 (2005)
http://dx.doi.org/10.1364/OPEX.13.007365


View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and numerically investigate the operation of a novel class of polarization-independent splitters based on the photonic crystal fiber (PCF) technology. The proposed polarization-independent feature of the PCF splitter is realized by uniformly distributed elliptically-shaped airholes in the cladding of a dual-core PCF. The design procedure follows a rigorous synthesis protocol based on exact equations for describing the wavelength de-coupling mechanism, and on full-vectorial finite element as well as beam propagation methods for optical characterization of PCFs. The compact de-coupling lengths as well as the low cross-talk over appreciable optical bandwidths are the main advantages of the proposed PCF splitter. The proposed device can be employed in reconfigurable optical communication systems for performing wavelength de-multiplexing operation, especially for fiber-to-the-home applications, as well as the emerging passive optical network applications.

© 2005 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing

ToC Category:
Research Papers

History
Original Manuscript: August 8, 2005
Revised Manuscript: August 29, 2005
Published: September 19, 2005

Citation
Nikolaos Florous, Kunimasa Saitoh, and Masanori Koshiba, "A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics," Opt. Express 13, 7365-7373 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7365


Sort:  Journal  |  Reset  

References

  1. J. A. Buck, Fundamentals of Optical Fibers, Wiley-Interscience (2004).
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. (Princenton, NJ: Princeton Univ. Press, 1995).
  3. J. Broeng, D. Mogilevtsev, S. E. Barkou, and A. Bjarklev, �??Photonic crystal fibers: A new class of optical waveguides,�?? Opt. Fiber Technol. 5, 305-330 (1999). [CrossRef]
  4. J. C. Knight, �??Photonic crystal fibers,�?? Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  5. J. C. Knight, T. A. Birks, P.St.J. Russel, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 484-485 (1996). [CrossRef]
  6. H. Kawata, T. Ogawa, and N. Yoshimoto, �??Multichannel video and IP signal multiplexing system using CWDM technology,�?? J. Lightwave Technol. 22, 1454-1462 (2004). [CrossRef]
  7. W. Chi, C. Rolland, F. Shepherd, C. Larocque, N. Puetz, K. D. Chi, and J. M. Xu, �?? InGaAsP/InP vertical directional coupler filter with optimally designed wavelength tunability,�?? IEEE Photonics Technol. Lett. 4, 457-459 (1993).
  8. C. R. Doerr, R. Pafchek, and L. W. Stulz, �??Integrated band demultiplexer using waveguide grating routers,�?? IEEE Photonics Technol. Lett. 15, 1088-1090 (2003). [CrossRef]
  9. B. J. Offrein, G. L. Bona, F. Horst, W. M. Salemink, R. Beyeler, and R. Germann, �??Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,�?? IEEE Photonics Technol. Lett. 11, 239-241 (1999). [CrossRef]
  10. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, and A. H. Greenway, �??Experimental study of dual core photonic crystal fiber,�?? Electron. Lett. 36, 1358-1359 (2000). [CrossRef]
  11. K. Saitoh, Y. Sato, and M. Koshiba, �??Coupling characteristics of dual-core photonic crystal fiber couplers,�?? Opt. Express 11, 3188-3195 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3188">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3188</a> [CrossRef] [PubMed]
  12. L. Zhang and C. Yang, �??Polarization-dependent coupling in twin core photonic crystal fibers,�?? J. Lightwave Technol. 22, 1367-1373 (2004). [CrossRef]
  13. K. Saitoh, Y. Sato, and M. Koshiba, �??Polarization splitter in three-core photonic crystal fibers,�?? Opt. Express 12, 3940-3946 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3940">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3940</a> [CrossRef] [PubMed]
  14. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Elencron. 38, 927-933 (2002). [CrossRef]
  15. N. A. Issa, M. A. Eijkelenborg, M. Fellew, F. Cox, G. Henry, and C. J. Large, �??Fabrication and study of microstructured optical fibers with elliptical holes,�?? Opt. Lett. 29, 1336-1338 (2004). [CrossRef] [PubMed]
  16. S. G. Leon-Saval, T. A. Birks, N.Y. Joly, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P.St.J. Russel, �??Splice-free interfacing of photonic crystal fibers,�?? Opt. Lett. 30, 1629-1631 (2005). [CrossRef] [PubMed]
  17. R. A. Forber and E. Marom, �??Symmetric directional coupler switches,�?? IEEE J. Quantum Electron. QE-38, 911-919 (1986). [CrossRef]
  18. K. Saitoh and M. Koshiba, �??Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic waveguides,�?? J. Lightwave Technol. 19, 405-413 (2001). [CrossRef]
  19. J. C. Knight, T. A. Birks, P. St J. Russell, and J. P. de Sandro, �??Properties of photonic crystal fiber and the effective index model,�?? Opt. Lett. 15, 748-752 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited