OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 19 — Sep. 19, 2005
  • pp: 7424–7431

230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber

G. Imeshev and M. E. Fermann  »View Author Affiliations


Optics Express, Vol. 13, Issue 19, pp. 7424-7431 (2005)
http://dx.doi.org/10.1364/OPEX.13.007424


View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report for the first time an all-fiber laser system that generates tunable Watt-level femtosecond pulses at around 2 μm without an external pulse compressor. The system is based on amplification of a Raman shifted Er-doped fiber laser in a Tm-doped 25-μm-core fiber. We obtain 108-fs pulses at 1980 nm with an average power of 3.1 W and a pulse energy of 31 nJ. The peak power at the output of the amplifier is estimated as ~230 kW, which to the best of our knowledge is the highest peak power obtained from a femtosecond or a few-picosecond amplifier based on any doped fiber. The amplified output is frequency-doubled to produce 78-fs pulses at 990 nm with an average power of 1.5 W and a pulse energy of 15 nJ. We demonstrate broad wavelength tunability around 2 μm as well as around 1 μm.

© 2005 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(320.5520) Ultrafast optics : Pulse compression
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Research Papers

History
Original Manuscript: July 18, 2005
Revised Manuscript: August 31, 2005
Published: September 19, 2005

Citation
G. Imeshev and M. Fermann, "230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber," Opt. Express 13, 7424-7431 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7424


Sort:  Journal  |  Reset  

References

  1. L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995). [CrossRef]
  2. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, "190-fs passively mode-locked thulium fiber laser with a low threshold," Opt. Lett. 21, 881-883 (1996). [CrossRef] [PubMed]
  3. N. Nishizawa and T. Goto, "Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers," IEEE Photonics Technol. Lett. 11, 325-327 (1999). [CrossRef]
  4. M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, "Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber," Opt. Lett. 24, 1428-1430 (1999). [CrossRef]
  5. N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers," IEEE J. Sel. Topics in Quantum Electron. 7, 518-524 (2001). [CrossRef]
  6. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, "High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier," Opt. Lett. 23, 1840-1842 (1998). [CrossRef]
  7. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics in Quantum Electron. 7, 504-517 (2001). [CrossRef]
  8. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tünnermann, "High-average-power femtosecond fiber chirped-pulse amplification system," Opt. Lett. 28, 1984-1986 (2003). [CrossRef] [PubMed]
  9. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, "Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing > 25-W average power," Opt. Lett. 29, 2073-2075 (2004). [CrossRef] [PubMed]
  10. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313</a>. [CrossRef] [PubMed]
  11. A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 µm," Opt. Express 13, 1221-1227 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1221">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1221</a>. [CrossRef] [PubMed]
  12. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, "High-power picosecond fiber amplifier based on nonlinear spectral compression," Opt. Lett. 30, 714-716 (2005). [CrossRef] [PubMed]
  13. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon amplifier," Opt. Express 13, 4717 - 4722 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4717</a>. [CrossRef] [PubMed]
  14. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, "High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm," Opt. Lett. 27, 1989-1991 (2002). [CrossRef]
  15. A. F. El-Sherif and T. A. King, "High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 µm," Opt. Lett. 28, 22-24 (2003). [CrossRef] [PubMed]
  16. S. D. Jackson, "Power scaling method for 2-µm diode-cladding-pumped Tm3+-doped silica fiber lasers that uses Yb3+ codoping," Opt. Lett. 28, 2192-2194 (2003). [CrossRef] [PubMed]
  17. S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004). [CrossRef]
  18. M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, "", in Fiber Lasers II: Technology, Systems, and Applications, L. N. Durvasula, A. J. W. Brown, and L. J. Nilsson, eds., Proc. SPIE 5709, 117-124 (2005). [CrossRef]
  19. D. Y. Shen, J. I. Mackenzie, J. K. Sahu, W. A. Clarkson, and S. D. Jackson, "High-power and ultra-efficient operation of a Tm3+-doped silica fiber laser," Advanced Solid-State Photonics 2005, Vienna, Austria, paper MC6.
  20. . Barannikov, F. Shcherbina, V. Gapontsev, M. Meleshkevich, and N. Platonov, "Linear-polarization, cw generation of 60 W power in a single-mode, Tm fibre laser," Conference on Lasers and Electro-Optics 2005, Baltimore, MD, paper CTuK2.
  21. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, CA, 2001).
  22. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," Conference on Lasers and Electro-Optics 2005, Baltimore, MD, paper CThG1.
  23. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997). [CrossRef]
  24. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000). [CrossRef]
  25. A. E. Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, "Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings," IEEE J. Sel. Topics in Quantum Electron. 5, 1298-1311 (1999). [CrossRef]
  26. P. E. Powers, T. J. Kulp, and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159-161 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited