OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 19 — Sep. 19, 2005
  • pp: 7548–7562

Optical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection

Erek S. Barhoum, Richard S. Johnston, and J. Seibel  »View Author Affiliations


Optics Express, Vol. 13, Issue 19, pp. 7548-7562 (2005)
http://dx.doi.org/10.1364/OPEX.13.007548


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency is 40x greater in the non-confocal versus the confocal geometry due to the majority of rays incident on the core being outside the numerical aperture. Across scan angles of 0 to 30°, collection efficiency decreases from 14.4% to 6.3% for the non-confocal design compared to 0.34% to 0.10% for the confocal design. Non-confocality provides higher and more uniform collection efficiencies at larger scan angles while sacrificing the confocal spatial filter.

© 2005 Optical Society of America

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(180.1790) Microscopy : Confocal microscopy

ToC Category:
Research Papers

History
Original Manuscript: August 2, 2005
Revised Manuscript: September 7, 2005
Published: September 19, 2005

Citation
Erek Barhoum, Richard Johnston, and Eric Seibel, "Optical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection," Opt. Express 13, 7548-7562 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7548


Sort:  Journal  |  Reset  

References

  1. K-. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, �??Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,�?? IEEE Trans. Biomed. Engr. 49, 1168-1172 (2002). [CrossRef]
  2. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A.F. Gmitro, �??Design and demonstration of a miniature catheter for a confocal microendoscope,�?? Appl. Opt. 43, 5763-5771 (2004). [CrossRef] [PubMed]
  3. K. Murakami, �??A miniature confocal optical scanning microscope for endoscope,�?? in MOEMS Display and Imaging Systems III, H. Urey and D. L. Dickensheets, eds., Proc. SPIE 5721, 119-131 (2005). [CrossRef]
  4. W. McLaren, P. Anikijenko, D. Barkla, P. Delaney, and R. King, �??In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),�?? Dig. Dis. Sci. 46, 2263-2276 (2001). [CrossRef] [PubMed]
  5. E. J. Seibel, Q. Y. J. Smithwick, C. M. Brown, and P. G. Reinhall, �??Single fiber flexible endoscope: general design for small size, high resolution, and wide field of view,�?? in Biomonitoring and Endoscopy Technologies, I. Gannot, Y. V. Gulyaev, T. G. Papazoglou, and C. F. P. van Swol, eds., Proc. SPIE 4158, 29-39 (2001). [CrossRef]
  6. E. J. Seibel and Q. Y. J. Smithwick, �??Unique features of optical scanning, single fiber endoscopy,�?? Lasers Surg. Med. 30, 177-183 (2002). [CrossRef] [PubMed]
  7. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, �??Double-clad fiber for endoscopy,�?? Opt. Lett. 29, 2408-2410 (2004). [CrossRef] [PubMed]
  8. R. S. Johnston and E.J. Seibel, �??Scanning fiber endoscope prototype performance�?? in Frontiers in Optics / Laser Science XX, Topical Meetings on CD-ROM (The Optical Society of America, Washington, DC, 2004), presentation summary # FWM2,�?? given in Rochester, NY, 10-14, Oct. 2004.
  9. S. L. Jacques, C. A. Alter, and S. A. Prahl, �??Angular Dependence of HeNe Laser Light Scattering by Human Dermis,�?? Lasers in the Life Sciences I, 309-334 (1987).
  10. N. S. Nishioka, S. L. Jacques, J. M. Richter, and R. R. Anderson, �??Reflection and Transmission of Laser Light From the Esophagus: The Influence of Incident Angle,�?? Gastroenterology 94, 1180-1185 (1988). [PubMed]
  11. ASTM E 1392-96, �??Standard Practice for Angle Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces.�?? Am. Soc. Test. Meas. (1996).
  12. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delany, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, �??Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,�?? Gastroenterology 127, 706-713 (2004). [CrossRef] [PubMed]
  13. S. L. Jacques, J. R. Roman, and K. Lee, �??Imaging superficial tissues with polarized light,�?? Lasers Surg. Med. 26, 119-129 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited