OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 19 — Sep. 19, 2005
  • pp: 7572–7582

High brightness single mode source of correlated photon pairs using a photonic crystal fiber

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St.J. Russell, and J. G. Rarity  »View Author Affiliations

Optics Express, Vol. 13, Issue 19, pp. 7572-7582 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (489 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a picosecond source of correlated photon pairs using a micro-structured fibre with zero dispersion around 715 nm wavelength. The fibre is pumped in the normal dispersion regime at ~708 nm and phase matching is satisfied for widely spaced parametric wavelengths. Here we generate up to 107 photon pairs per second in the fibre at wavelengths of 587 nm and 897 nm, while on collecting this light in single-mode-fibre-coupled Silicon avalanche diode photon counting detectors, we detect ~3.2×105 coincidences per second at pump power 0.5 mW.

© 2005 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics

ToC Category:
Research Papers

Original Manuscript: June 27, 2005
Revised Manuscript: September 7, 2005
Published: September 19, 2005

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005)

Sort:  Journal  |  Reset  


  1. J. G. Rarity, Quantum Communications and Beyond, Royal Society Philosophical Transactions, 361, 1507-18 (2003). [CrossRef]
  2. S. Gasparoni, J-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, �??Realization of a Photonic Controlled-NOT Gate Sufficient for Quantum Computation,�?? Phys. Rev. Lett. 93, 020504 (2004). [CrossRef] [PubMed]
  3. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer & A. Zeilinger, �??Experimental one-way quantum computing,�?? Nature 434, 169 (2005). [CrossRef] [PubMed]
  4. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, �??Quantum Cryptography,�?? Rev. Mod. Phys. 74, 145 (2002). [CrossRef]
  5. H. Weinfurter, �??Quantum Communications, �??Quantum communication with entangled photons,�?? Adv. At. Mol. Opt. Phys. 42, 489 (2000). [CrossRef]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, �??New High Intensity Source of Entangled Photon Pairs,�?? Phys. Rev. Lett 75, 4337 (1995). [CrossRef] [PubMed]
  7. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High Efficiency entangled pair collection in type II parametric fluorescence,�?? Phys. Rev. Lett. 85, 290�??293 (2000). [CrossRef] [PubMed]
  8. R. Andrews, E. R. Pike, and S. Sarkar, "Optimal coupling of entangled photons into single-mode optical fibers," Opt. Express 12, 3264-3269 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3264">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3264</a> [CrossRef] [PubMed]
  9. G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster and J. G.Rarity, �??Parametric fluorescence in periodically poled silica fibres,�?? Appl. Phys. Lett. 75, 2356 (1999). [CrossRef]
  10. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26-28 (2001). [CrossRef]
  11. A. B. U�??Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, �??Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks,�?? Phys. Rev. Lett. 93, 601 (2004)
  12. G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).
  13. L. J. Wang, C. K. Hong, and S. R. Friberg, �??Generation of correlated photons via four-wave mixing in optical fibres,�?? J. Opt. B: Quantum and Semiclass. Opt. 3, 346-352 (2001). [CrossRef]
  14. M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, �??All-fibre photon pair source for quantum communications,�?? IEEE Photonics Technol Lett. 14, 983-5 (2002). [CrossRef]
  15. X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,�?? Opt. Express 12, 3737-3745 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737</a> [CrossRef] [PubMed]
  16. J. E. Sharping, J. Chen, X. Li, P. Kumar, �??Quantum Correlated twin photons from microstructured fibre,�?? Opt. Express 12, 3086-3094 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086</a> [CrossRef] [PubMed]
  17. X. Li, P. L. Voss, & P. Kumar, �??Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,�?? arXiv:quant-ph/0402191 (Feb 2004).
  18. H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802 (R) (2004). [CrossRef]
  19. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, P. St. J. Russell , �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a> [CrossRef] [PubMed]
  20. W. J.Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, J. R. Fulconis: �??Single-mode source of correlated photon pairs from photonic crystal fibre,�?? International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)
  21. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534</a> [CrossRef] [PubMed]
  22. Dougherty D J, Kärtner F X, Haus H A and Ippen E P 1995 "Measurement of the Raman gain spectrum of optical fibers" Opt. Lett. 20 31-3 [PubMed]
  23. J G Rarity, �??Interference of single photons from separate sources,�?? in FUNDAMENTAL PROBLEMS IN QUANTUM THEORY D M Greenberger and A Zeilinger eds, Annals of the New York Academy of Sciences, 1995 p.624.
  24. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, P.St.J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photonics Technol Lett. 12 (7), 807-809 (2000). [CrossRef]
  25. J G Rarity, K D Ridley and P R Tapster, �??An absolute measurement of detector quantum efficiency using parametric down-conversion,�?? Appl. Opt. 26, 4616-4619 (1987) [CrossRef] [PubMed]
  26. Perkin Elmer SPCM data sheet: <a href="http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf">http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf</a>
  27. During the preparation of the manuscript other groups have obtained comparable brightness in similar fibres: see J. Fan, A. Migdall and L-J Wang, quant-ph 0505211
  28. S.G. Leon-Saval, T.A. Birks, N.Y. Joly, A.K. George, W.J. Wadsworth, G. Kakarantzas and P.St.J. Russell, �??Splice-free interfacing of photonic crystal fibres,�?? Opt. Lett. 30 (13), 1629-1631, (2005) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (56 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited