OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 19 — Sep. 19, 2005
  • pp: 7609–7614

Holey fiber tapers with resonance transmission for high-resolution refractive index sensing

Vladimir P. Minkovich, Joel Villatoro, David Monzón-Hernández, Sergio Calixto, Alexander B. Sotsky, and Ludmila I. Sotskaya  »View Author Affiliations


Optics Express, Vol. 13, Issue 19, pp. 7609-7614 (2005)
http://dx.doi.org/10.1364/OPEX.13.007609


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of large-mode-area tapered holey fibers with collapsed air holes for refractive index sensing is demonstrated. The collapsing of the holes is achieved by tapering the fibers with a “slow-and-hot” method. This non adiabatic process makes the core mode to couple to multiple modes of the solid taper waist. Owing to the beating between the modes the transmission spectra of the tapered holey fibers exhibit several interference peaks. They shift remarkable to longer wavelengths as the external index increases. The multiple peaks, combined with a fitting algorithm, may allow high-accuracy refractometric measurements which can be used for diverse applications.

© 2005 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1150) Optical devices : All-optical devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

History
Original Manuscript: August 16, 2005
Revised Manuscript: September 9, 2005
Published: September 19, 2005

Citation
Vladimir Minkovich, Joel Villatoro, David Monzón-Hernández, Sergio Calixto, Alexander Sotsky, and Ludmila Sotskaya, "Holey fiber tapers with resonance transmission for high-resolution refractive index sensing," Opt. Express 13, 7609-7614 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7609


Sort:  Journal  |  Reset  

References

  1. P. St. J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluver Academic Publishers, Boston, (2003). [CrossRef]
  3. T. M. Monro, W. Belardi, K. Furusawa, J. C. Bagget, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibers,�?? Meas. Sci. Technol. 12, 854-858 (2001). [CrossRef]
  4. S. O. Konorov, A. Zheltikov, and M. Scalora, �??Photonic-crystal fiber as a multifunctional optical sensor and sample collector,�?? Opt. Express 13, 3454-3459 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI= OPEX-13-9-3454">http://www.opticsexpress.org/abstract.cfm?URI= OPEX-13-9-3454</a>. [CrossRef] [PubMed]
  5. Y.K. Lize, E.C. Magi, V.G. Ta�??eed, J.A. Bolger, P. Steinvurzel, and B.J. Eggleton, �??Microstructured optical fiber photonic wires with subwavelength core diameter,�?? Opt. Express 12, 3209-3217 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209</a>. [CrossRef] [PubMed]
  6. E.C. Magi, H.C. Nguyen, and B.J. Eggleton, �??Air-hole collapse and mode transitions in microstructured fiber photonic wires,�?? Opt. Express 13, 453-459 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453</a>. [CrossRef] [PubMed]
  7. S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, �??Tapered-fiber interferometric wavelength response: the achromatic fringe,�?? Opt. Lett. 13, 395-397 (1988). [CrossRef] [PubMed]
  8. S. Lacroix, R. J. Black, C. Veilleux, and J. Lapierre, �??Tapered single-mode fibers: external refractive-index dependence,�?? Appl. Opt. 25, 2468-2469 (1986). [CrossRef] [PubMed]
  9. W. Johnstone, G. Thusrby, D. Moodie, and K. McCallion, �??Fiber-optic refractometer that utilizes multimode overlay devices,�?? Opt. Lett. 17, 1538-1540 (1992). [CrossRef] [PubMed]
  10. J. Villatoro, D. Monzón-Hernández, and D. Talavera, �??High resolution refractive index sensing with cladded multimode tapered optical fibre,�?? Electron. Lett. 40, 106-107 (2004). [CrossRef]
  11. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, �??Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,�?? Opt. Lett. 30, 1273-1275 (2005). [CrossRef] [PubMed]
  12. X. Shu, B. A. L. Gwandu, L. Zhang and I. Bennion, �??Sampled fibre Bragg grating for simultaneous refractive-index and temperature measurement,�?? Opt. Lett. 26, 774-776 (2001). [CrossRef]
  13. K. Schroeder, W. Ecke, R. Mueller, R. Willsch and A. Andreev, �??A fibre Bragg grating refractometer,�?? Meas. Sci. Technol. 12, 757-764 (2001). [CrossRef]
  14. A. Iadiccico, S. Campopiano, A. Cutolo, M. Giordono, and A. Cusano, �??Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,�?? IEEE Photonics Technol. Lett. 17, 1495-1497 (2005). [CrossRef]
  15. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, and J. N. Jang, �??Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,�?? Opt. Lett. 22, 1769-1771 (1997). [CrossRef]
  16. T. Allsop, R. Reeves. D. J. Webb, I. Beninion, and R. Neal, �??A high sensitivity refractometer based upon a long period grating Mach�??Zehnder interferometer,�?? Rev. Sci. Instrum. 73, 1702-1705 (2002). [CrossRef]
  17. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, �??Highly sensitive fiber Bragg grating refractive index sensors,�?? Appl. Phys. Lett. 86, 151122 (2005). [CrossRef]
  18. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, �??Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,�?? IEEE Photonics Technol. Lett. 17, 1247-1249 (2005). [CrossRef]
  19. V. P. Minkovich, A. V. Kiryanov, A. B. Sotsky, and L. I. Sotskaya, �??Large-mode-area holey fibers with a few air channels in cladding: modeling and experimental investigation of the modal properties,�?? J. Opt. Soc. Am. B 21, 1161-1169 (2004). [CrossRef]
  20. V. P. Minkovich, A. V. Kir�??yanov, and S. Calixto, �??Large-hole-large-spacing holey fibers with a few air holes: fabrication and measurements of light-delivering properties and optical losses,�?? Laser Phys. 14, 767-771 (2004).
  21. V. P. Minkovich, A. V. Kir�??yanov, and S. Calixto, �??Modeling, fabrication and characterization of large-mode-area photonic crystal fibers with low bending loss,�?? in 8th Int. Symposium on Laser Metrology, R. Rodrigues-Vera and F. Mendoza-Santoyo, eds., Proc. SPIE Vol. 5776, -408 (2005). [CrossRef]
  22. J. Villatoro, D. Monzón-Hernández, and E. Mejía, �??Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,�?? Appl. Opt. 42, 2278-2283 (2003). [CrossRef] [PubMed]
  23. E. C. Magi, P. Steinvurzel, and B. J. Eggleton �??Transverse characterization of tapered photonic crystal fibers,�?? J. Appl. Phys. 96, 3976-3982 (2004). [CrossRef]
  24. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, A. B. Sotsky, and L. I. Sotskaya are preparing a manuscript to be called �??Modeling of holey fiber tapers with resonance transmission for sensor applications.�??

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited