OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 2 — Jan. 24, 2005
  • pp: 400–409

Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser

Enrique J. Fernández, Angelika Unterhuber, Pedro M. Prieto, Boris Hermann, Wolfgang Drexler, and Pablo Artal  »View Author Affiliations


Optics Express, Vol. 13, Issue 2, pp. 400-409 (2005)
http://dx.doi.org/10.1364/OPEX.13.000400


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact mode-locked Ti:sapphire laser, emitting a broad spectrum of 277 nm bandwidth, centered at 790 nm, was used to measure the dependence of the aberrations of the human eye with wavelength in the near infrared region. The aberrations were systematically measured with a Hartmann-Shack wave-front sensor at the following wavelengths: 700, 730, 750, 780, 800, 850, 870 and 900 nm, in four normal subjects. During the measurements, the wavelengths were selected by using 10 nm band-pass filters. We found that monochromatic high order aberrations, beyond defocus, were nearly constant across 700 to 900 nm wavelength in the four subjects. The average chromatic difference in defocus was 0.4 diopters in the considered wavelength band. The predictions of a simple water-eye model were compared with the experimental results in the near infrared. These results have potential applications in those situations where defocus or higher order aberration correction in the near infrared is required. This is the case of many imaging techniques: scanning laser ophthalmoscope, flood illumination fundus camera, or optical coherence tomography.

© 2005 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Research Papers

History
Original Manuscript: December 14, 2004
Revised Manuscript: January 5, 2005
Published: January 24, 2005

Citation
Enrique Fernández, Angelika Unterhuber, Pedro Prieto, Boris Hermann, Wolfgang Drexler, and Pablo Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-400


Sort:  Journal  |  Reset  

References

  1. M. S. Smirnov, �??Measurement of the wave aberration of the human eye,�?? Biofizika 6, 687-703 (1961) [PubMed]
  2. B. Howland and H. C. Howland, �??Subjective measurement of high order aberrations of the eye,�?? Science 193, 580-582 (1976) [CrossRef] [PubMed]
  3. G. Walsh, W. N. Charman, and H. C. Howland, �??Objetive technique for the determination of monochromatic aberrations of the human eyes,�?? J. Opt. Soc. Am. A 1, 987-992 (1984) [CrossRef] [PubMed]
  4. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, �??Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,�?? J. Opt. Soc. Am. A. 11, 1949-1957 (1994) [CrossRef]
  5. I. Iglesias, E. Berrio, and P. Artal, �??Estimates of the ocular wave aberration from pairs of double-pass retinal images,�?? J. Opt. Soc. Am. A. 15, 2466-2476 (1998) [CrossRef]
  6. P. Artal and A. Guirao, �??Contributions of the cornea and the lens to the aberrations of the human eye,�?? Opt. Lett. 23, 1713-1715 (1998) [CrossRef]
  7. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, �??Compensation of corneal aberrations by the internal optics in the human eye,�?? Journal of Vision 1, 1-8 (2001), <a href="http://journalofvision.org/1/1/1">.http://journalofvision.org/1/1/1</a> [CrossRef]
  8. G. Wald and D. R. Griffin, �??The change in refractive power of the human eye in dim and bright light,�?? J. Opt. Soc. Am. 37, 321-336 (1947) [CrossRef] [PubMed]
  9. R. E. Bedford and G. Wyszecki, �??Axial chromatic aberration of the human eye,�?? J. Opt. Soc. Am. 47, 564- 565 (1957) [CrossRef] [PubMed]
  10. W. N. Charman and J. A. Jennings, �??Objective measurements of the longitudinal chromatic aberration of the human eye,�?? Vision Res. 16, 999-1005 (1976) [CrossRef] [PubMed]
  11. P. A. Howarth and A. Bradley, �??The longitudinal chromatic aberration of the human eye and its correction,�?? Vision Res. 26, 361-366 (1986) [CrossRef] [PubMed]
  12. Y. U. Ogboso and H. E. Bedell, �??Magnitude of lateral chromatic aberration across the retina of the human eye,�?? J. Opt. Soc. Am. A 4, 1666-1672 (1987) [CrossRef] [PubMed]
  13. P. Simonet and M. C. W. Campbell, �??The optical transverse chromatic aberration on the fovea of the human eye,�?? Vision Res. 30, 187-206 (1990) [CrossRef] [PubMed]
  14. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, �??The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,�?? App. Opt. 31, 592-599 (1992) [CrossRef]
  15. A. van Meeteren, �??Calculations of the optical modulation transfer function of the human eye for white light,�?? Opt. Acta 21, 395-412 (1974) [CrossRef]
  16. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, �??A new approach to study ocular chromatic aberrations,�?? Vision Res. 39, 4309-4323 (1999) [CrossRef]
  17. F. C. Delori and K. P. Pflibsen, �??Spectral reflectance of the human ocular fundus,�?? Appl. Opt. 28, 1061-1067 (1989) [CrossRef] [PubMed]
  18. J. Santamaría, P. Artal, and J. Bescós, �??Determination of the point-spread function of the human eye using a hybrid optical-digital method,�?? J. Opt. Soc. Am. A 4, 1109-1114 (1987) [CrossRef] [PubMed]
  19. N. López-Gil and P. Artal, �??Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,�?? J. Opt. Soc. Am. A 14, 961-971 (1997) [CrossRef]
  20. L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, �??Aberrations of the human eye in visible and near infrared illumination,�?? Optom. Vis. Sci. 80, 26-35 (2003) [CrossRef] [PubMed]
  21. T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, �??Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,�?? Appl. Phys. B 77, 125�??128 (2003) [CrossRef]
  22. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, �??Analysis of the performance of the Hartmann-Shack sensor in the human eye,�?? J. Opt. Soc. Am. A 17, 1388-1400 (2000) [CrossRef]
  23. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, �??Ultra high resolution ophthalmic optical coherence tomography,�?? Nat. Med. 7, 502-507 (2001) [CrossRef] [PubMed]
  24. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, �??Dynamics of the eye´s wave aberration,�?? J. Opt. Soc. Am. A 18, 1-10 (2001) [CrossRef]
  25. L. N. Thibos, A. Bradley, and X. Zhang, �??The effect of ocular chromatic aberration on monocular visual performance,�?? Optom. Vis. Sci. 68, 599-607 (1991) [CrossRef] [PubMed]
  26. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag Berlin Heidelberg New York, 1980).
  27. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, �??Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,�?? Opt. Lett. 29, 2142-2144 (2004) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited