OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 2 — Jan. 24, 2005
  • pp: 595–600

Photoporation and cell transfection using a violet diode laser

L. Paterson, B. Agate, M. Comrie, R. Ferguson, T. K. Lake, J. E. Morris, A. E. Carruthers, C. T. A. Brown, W. Sibbett, P. E. Bryant, F. Gunn-Moore, A. C. Riches, and K. Dholakia  »View Author Affiliations

Optics Express, Vol. 13, Issue 2, pp. 595-600 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

© 2005 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1420) Medical optics and biotechnology : Biology
(170.1530) Medical optics and biotechnology : Cell analysis

ToC Category:
Research Papers

Original Manuscript: December 21, 2004
Revised Manuscript: January 13, 2005
Published: January 24, 2005

L. Paterson, B. Agate, M. Comrie, R. Ferguson, T. Lake, J. Morris, A. Carruthers, C. T. Brown, W. Sibbett, P. Bryant, F. Gunn-Moore, A. Riches, and Kishan Dholakia, "Photoporation and cell transfection using a violet diode laser," Opt. Express 13, 595-600 (2005)

Sort:  Journal  |  Reset  


  1. F.L. Graham and A.J. Van der Eb, �??A new technique for the assay of infectivity of human adenovirus 5 DNA,�?? Virology 52, 456-467 (1973). [CrossRef] [PubMed]
  2. R. Fraley, S. Subramani, P. Berg, and D. Papahadjopolous, �??Introduction of liposome-encapsulated SV40 DNA into cells,�?? J. Biol. Chem. 255, 10431-10435 (1980). [PubMed]
  3. D.A. Rubinson, C.P. Dillon, A.V. Kwiatkowski, C. Sievers, L. Yang, J. Kopinja, M. Zhang, M.T. McManus, F.B. Gertler, M.L. Scott, and L. Van Parijs, �??A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference,�?? Nature Genet. 33, 401-406 (2003). [CrossRef] [PubMed]
  4. T.K. Wong and E. Neumann, �??Electric-field mediated gene-transfer,�?? Biochem. and Biophys. Res. Commun. 107, 584-587 (1982). [CrossRef]
  5. H. Schneckenburger, A. Hendinger, R. Sailer, W.S.L. Strauss, and M. Schmitt, �??Laser-assisted optoporation of single cells,�?? J. Biomed. Opt. 7, 410-416 (2002). [CrossRef] [PubMed]
  6. G. Palumbo, M. Caruso, E. Crescenzi, M.F. Tecce, G. Roberti, and A. Colasanti, �??Targeted gene transfer in eucaryotic cells by dye-assisted laser optoporation,�?? J. Photochem. Photobiol. B-Biol. 36, 41-46 (1996). [CrossRef]
  7. Y. Shirahata, N. Ohkohchi, H. Itagak, and S. Satomi, �??New technique for gene transfection using laser irradiation,�?? J. Invest. Med. 49, 184-190 (2001). [CrossRef]
  8. J.S. Soughayer, T. Krasieva, S.C. Jacobson, J.M. Ramsey, B.J. Tromberg, and N.L. Allbritton, �??Characterization of cellular optoporation with distance,�?? Anal. Chem. 72, 1342-1347 (2000). [CrossRef] [PubMed]
  9. S.K. Mohanty, M. Sharma, and P.K. Gupta, �??Laser-assisted microinjection into targeted animal cells,�?? Biotechnol. Lett. 25, 895-899 (2003). [CrossRef] [PubMed]
  10. U.K. Tirlapur and K. Konig, �??Femtosecond near-infrared laser pulses as a versatile non- invasive tool for intra-tissue nanoprocessing in plants without compromising viability,�?? Plant J. 31, 365-374 (2002). [CrossRef] [PubMed]
  11. U.K. Tirlapur and K. Konig, �??Targeted transfection by femtosecond laser,�?? Nature 418, 290-291 (2002). [CrossRef] [PubMed]
  12. E. Zeira, A. Manevitch, A. Khatchatouriants, O. Pappo, E. Hyam, M. Darash-Yahana, E. Tavor, A. Honigman, A. Lewis, and E. Galun, �??Femtosecond Infrared Laser - An Efficient and Safe in Vivo Gene Delivery System for Prolonged Expression,�?? Mol. Therapy 8, 342-350 (2003). [CrossRef]
  13. J.M. Girkin and A.I. Ferguson, �??Confocal microscopy using an InGaN violet laser diode at 406nm,�?? Opt. Express 7, 336-341 (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336</a> [CrossRef] [PubMed]
  14. T.K. Lake, A.E. Carruthers, L. Paterson, M. Taylor, F. Gunn-Moore, J.W. Allen, W. Sibbett, and K. Dholakia, �??Optical trapping and fluorescence excitation with violet diode lasers and extended cavity surface emitting lasers,�?? Opt. Express 12, 670-678 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-670</a> [CrossRef] [PubMed]
  15. P. Southern and P. Berg, �??Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter,�?? J. Mol. Appl. Genet. 1, 327-341 (1982). [PubMed]
  16. Y Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman and B J. Tromberg, �??Evidence for localized cell heating induced by infrared optical tweezers,�?? Biophys. J. 68, 2137-2144 (1995). [CrossRef] [PubMed]
  17. D. McGloin and K. Dholakia, private communication

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited