OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 2 — Jan. 24, 2005
  • pp: 627–635

Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area

A. Huttunen and P. Törmä  »View Author Affiliations


Optics Express, Vol. 13, Issue 2, pp. 627-635 (2005)
http://dx.doi.org/10.1364/OPEX.13.000627


View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate dual concentric core and microstructure fiber geometries for dispersion compensation. Dispersion values as large as -59 000 ps/(nm km) are achieved, over a broad wavelength range with full width at half maximum exceeding 100 nm. The trade-off between large dispersion and mode area is studied. Geometries with an effective mode area of 30µm2 and dispersion -19 000 ps/(nm km) and 80µm2 with -1600 ps/(nm km) are proposed.

© 2005 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Research Papers

History
Original Manuscript: December 2, 2004
Revised Manuscript: January 13, 2005
Published: January 24, 2005

Citation
Anu Huttunen and P. Törmä, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13, 627-635 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-627


Sort:  Journal  |  Reset  

References

  1. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russel, �??Dispersion compensation using single-material fibers,�?? IEEE Photon. Tech. Lett. 11, 674�??676 (1999). [CrossRef]
  2. L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, �??Design and optimization of photonic crystal fibers for broad-band dispersion compensation,�?? IEEE Photon. Tech. Lett. 15, 540�??542 (2003). [CrossRef]
  3. L. P. Shen, W.-P. Huang, and S. S. Jian, �??Design of photonic crystal fibers for dispersion-related applications,�?? J. Lightwave Tech. 21, 1644�??1651 (2003). [CrossRef]
  4. R. K. Sinha and S. K. Varshney, �??Dispersion properties of photonic crystal fibers,�?? Microwave and Optical Tech. Lett. 37, 129�??132 (2003). [CrossRef]
  5. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, �??Characterization of microstructured optical fibers for wideband dispersion compensation,�?? J. Opt. Soc. Am. A 20, 1958�??1962 (2003). [CrossRef]
  6. Y. Ni, L. An, J. Peng, and C. Fan, �??Dual-core photonic crystal fiber for dispersion compensation,�?? IEEE Photon. Tech. Lett. 16, 1516�??1518 (2004). [CrossRef]
  7. B. Zsigri, J. Laegsgaard, and A. Bjarklev, �??A novel photonic crystal fibre design for dispersion compensation,�?? J. Opt. A: Pure Appl. Opt. 6, 717�??720 (2004). [CrossRef]
  8. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, �??A novel design of a dispersion compensating fiber,�?? IEEE Photon. Technol. Lett. 8, 1510�??1512 (1996). [CrossRef]
  9. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, �??-1800 ps(nm.km) chromatic dispersion at 1.55 µm in dual cocentric core fibre,�?? Electronics Lett. 36, 1689�??1691 (2000). [CrossRef]
  10. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, �??Dispersion compensating fibers,�?? Opt. Fiber Technol. 6, 164�??180 (2000). [CrossRef]
  11. J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, �??Conception, realization, and characterization of a very high negative chromatic dispersion fiber,�?? Opt. Fiber Technol. 8, 89�??105 (2002). [CrossRef]
  12. K. Pande and B. P. Pal, �??Design optimization of a dual-core dipersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers,�?? Appl. Opt. 42, 3785�??3791 (2003). [CrossRef] [PubMed]
  13. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, �??An all-dielectric coaxial waveguide,�?? Science 289, 415 (2000). [CrossRef] [PubMed]
  14. G. Ouyang, Y. Xu, and A. Yariv, �??Theoretical study on dispersion compensation in air-core Bragg fibers,�?? Opt. Express 10, 899�??908 (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899</a>. [PubMed]
  15. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, �??Dispersion tailoring and compensation by model interactions in OmniGuide fibers,�?? Opt. Express 11, 1175�??1196 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175</a>. [CrossRef] [PubMed]
  16. C. D. Poole, J. M.Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, �??Optical fiber-based dispersion compensation using higher order modes near cutoff�??, J. Lightwave Technol. 12, 1746�??1758 (1994). [CrossRef]
  17. A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, �??Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,�?? Electronics Lett. 36, 1946�??1947 (2000). [CrossRef]
  18. S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, �??All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s,�?? IEEE Photon. Tech. Lett. 13, 632�??634 (2001). [CrossRef]
  19. S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, �??Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,�?? Electronics Lett. 38, 1507�??1508 (2002). [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>. [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1995).
  22. R. Iliew, C. Etrich, and F. Lederer, �??Remote coupling in Bragg fibers,�?? Opt. Lett. 29, 1596�??1598 (2004). [CrossRef] [PubMed]
  23. M. Vaziri and C.-L. Chen, �??An etched two-mode fiber modal coupling element,�?? J. Lightwave Tech. 15, 474�??480 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited