OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 2 — Jan. 24, 2005
  • pp: 636–647

Fractal extensions of near-field aperture shapes for enhanced transmission and resolution

J. A. Matteo and L. Hesselink  »View Author Affiliations


Optics Express, Vol. 13, Issue 2, pp. 636-647 (2005)
http://dx.doi.org/10.1364/OPEX.13.000636


View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Families of fractals are investigated as near-field aperture shapes. They are shown to have multiple transmission resonances associated with their multiple length scales. The higher iterations exhibit enhanced transmission, and spatial resolution exceeding the first order. Near-field enhancements of greater than 400 times the incident intensity and resolutions of better than λ/20 have been shown with apertures modeled after third iteration prefractals. Enhancements as large as 1011 have been shown, when compared with conventional square apertures that produce the same spot size. The effects of the complex permittivity values of the metal film are also addressed.

© 2005 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(350.5730) Other areas of optics : Resolution

ToC Category:
Research Papers

History
Original Manuscript: November 10, 2004
Revised Manuscript: January 6, 2005
Published: January 24, 2005

Citation
Joseph Matteo and L. Hesselink, "Fractal extensions of near-field aperture shapes for enhanced transmission and resolution," Opt. Express 13, 636-647 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-636


Sort:  Journal  |  Reset  

References

  1. H. A. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163 (1944). [CrossRef]
  2. X. Shi, L. Hesselink, �??Mechanisms for enhancing power throughput from planar nano-apertures for nearfield optical data storage,�?? Jpn. J. Appl. Phys. 41, 1632-5 (2001). [CrossRef]
  3. X. Shi, L. Hesselink, and R. L. Thornton, �??Ultrahigh light transmission through a C-shaped nanoaperture,�?? Opt. Lett. 28, 1320-22 (2003). [CrossRef] [PubMed]
  4. F. Demming, J. Jersch, S. Klein, K. Dickman, �??Coaxial scanning near-field optical microscope tips: an alternative for conventional tips with high transmission efficiency?,�?? J. of Microsc. 201, 383-7 (2001). [CrossRef]
  5. K. Tanaka, M. Oumi, T. Niwa, S. Ichihara, Y. Mitsuoka, K. Nakajima, T. Ohkubo, H. Hosaka, K. Itao, �??High spatial resolution and throughput potential of an optical head with a triangular aperture for nearfield optical data storage,�?? Jpn. J. Appl. Phys. 42, 1113-17 (2003). [CrossRef]
  6. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667-9 (1998). [CrossRef]
  7. T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, T.W. Ebbesen, �??Enhanced light transmission through a single subwavelength aperture,�?? Opt. Lett. 26, 1972-4 (2001). [CrossRef]
  8. L. Sun, L. Hesselink, �??Topology visualization of the optical power flow through a novel, C-shaped nanoaperture,�?? IEEE TCVG Conference, Austin TX 2004 (to be published).
  9. F.J. Garcia-Vidal, H.J. Lezec, T.W. Ebbesen, L. Martin-Moreno, �??Multiple paths to enhance optical transmission through a single subwavelength slit ,�?? Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  10. K.J. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Chichester, 2003).
  11. K. J. Vinoy, K.A. Jose, K. K. Varadan, V. V. Varadan, �??Hilbert curve fractal antenna: a small resonant antenna for VHF/UHF applications,�?? Microwave Opt. Technol. Lett. 29, 215-19 (2001). [CrossRef]
  12. C. Puente, J. Romeu, R. Pous, X. Garcia, F. Benitez, �??Fractal multiband antenna based on the Sierpinski gasket,�?? Electron. Lett. 32, 1-2 (1996). [CrossRef]
  13. J.P. Gianvittorio, J. Romeu, S. Blanch, Y. Rahmat-Samii, �??Self-similar prefractal frequency selective surfaces for multiband and dual-polarized applications,�?? IEEE Trans. on Antennas and Propagation 51, 3088-96 (2003). [CrossRef]
  14. V.M. Shalaev, Optical properties of nanostructured random media (Springer, New York, 2001).
  15. A. Moreau, G. Granet, F.I. Baida ,D. Van Labeke,�??Light transmission by subwavelength square coaxial aperture arrays in metallic films,�?? Opt. Express 11, 1131-6 (2003). [CrossRef] [PubMed]
  16. J.A. Matteo, D.P. Fromm, Y. Yuen, P.J. Schuck, W.E. Moerner, L. Hesselink, �??Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,�?? Appl. Phys. Lett. 26, 648-50 (2004). [CrossRef]
  17. C.M. Furse, �??Faster than Fourier - ultra-efficient time-to-frequency domain conversions for FDTD,�?? IEEE Antennas and Propagation Magazine 42, 24-34 (2000). [CrossRef]
  18. Y. Leviatan, �??Study of near-zone fields of a small aperture,�?? J. of Appl. Phys. 60, 1577-83 (1986). [CrossRef]
  19. X.L. Shi, L. Hesselink, �??Design of a C aperture to achieve lambda /10 resolution and resonant transmission,�?? J. Opt. Soc. Am. B 21, 1305-17 (2004). [CrossRef]
  20. E.X. Jin, X.F. Xu, �??Finite-difference time-domain studies on optical transmission through planar nanoapertures in a metal film,�?? Jpn. J. Appl. Phys. 43, 407-17 (2004). [CrossRef]
  21. D. H. Werner, S. Ganguly, �??An overview of fractal antenna engineering research,�?? IEEE Antennas and Propagation Magazine 45, 38-57 (2003). [CrossRef]
  22. D.H. Werner, R. Mittra, Frontiers in Electromagnetics (IEEE Press, New York, 2000).
  23. L. Xiangang, T. Ishihara, �??Surface plasmon resonant interference nanolithography technique,�?? Appl. Phys. Lett. 84, 4780-2 (2004). [CrossRef]
  24. J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, �??Near-field spectroscopy of single molecules a at room temperature,�?? Nature 369, 40-2 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2354 KB)     
» Media 2: AVI (2172 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited