OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 2 — Jan. 24, 2005
  • pp: 666–674

High resolution optical frequency domain reflectometry for characterization of components and assemblies

Brian J. Soller, Dawn K. Gifford, Matthew S. Wolfe, and Mark E. Froggatt  »View Author Affiliations


Optics Express, Vol. 13, Issue 2, pp. 666-674 (2005)
http://dx.doi.org/10.1364/OPEX.13.000666


View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a technique for polarization sensitive optical frequency domain reflectometry (OFDR) that achieves 22 micrometer two-point spatial resolution over 35 meters of optical length with -97 dB sensitivity in a single measurement taking only seconds. We demonstrate OFDR’s versatility in both time- and frequency-domain metrology by analyzing a fiber Bragg grating (FBG) in both the spectral and impulse response domains. We also demonstrate how a polarization diversity receiver can be used in an OFDR system to track changes in the polarization state of light propagating through a birefringent component.

© 2005 Optical Society of America

OCIS Codes
(060.2920) Fiber optics and optical communications : Homodyning
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Research Papers

History
Original Manuscript: November 19, 2004
Revised Manuscript: January 20, 2005
Published: January 24, 2005

Citation
Brian Soller, Dawn Gifford, Matthew Wolfe, and Mark Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Express 13, 666-674 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-666


Sort:  Journal  |  Reset  

References

  1. W. Sorin and D. Baney, �??Measurement of rayleigh backscatter at 1.55 µm with 32 µm spatial resolution,�?? IEEE Photon. Technol. Lett. 4, 374-376 (1992). [CrossRef]
  2. J. P. Von derWeid, R. Passy, G. Mussi, and N. Gisin, �??On the characterization of optical fiber network components with optical frequency domain reflectometry,�?? J. Lightwave Tech. 15, 1131�??1141 (1997). [CrossRef]
  3. P. Oberson, B. Huttner, O. Guinnard, G. Ribordy, and N. Gisin, �??Optical frequency domain reflectometry with a narrow linewidth fiber laser,�?? IEEE Photon. Technol. Lett. 12, 867-869 (2000). [CrossRef]
  4. W. Eickhoff and R. Ulrich, �??Optical frequency domain reflectometry in single-mode fiber,�?? Appl. Phys. Lett. 39 693�??695 (1981). [CrossRef]
  5. U. Glombitza and E. Brinkmeyer, �??Coherent frequency domain reflectomtry for charactization of single-mode integrated optical waveguides,�?? J. Lightwave Technol. 11, 1377�??1384 (1993). [CrossRef]
  6. M. Froggatt, T. Erdogan, J. Moore, and S. Shenk, �??Optical frequency domain characterization (OFDC) of dispersion in optical fiber Bragg gratings,�?? in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, Washington, DC, 1999), paper FF2. [PubMed]
  7. S. Kieckbusch, Ch. Knothe, and E. Brinkmeyer, �??Fast and accurate characterization of fiber Bragg gratings with high spatial resolution and spectral resolution,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2003), paper WL2.
  8. G. D. VanWiggeren, A. R. Motamedi, B. Szafraniec, R. S. Tucker, and D. M. Baney, �??Singe-scan polarizationresolved heterodyne optical network analyzer,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2002), paper WK2.
  9. M. Froggatt, �??Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber,�?? Appl. Opt. 35 5162�??5164 (1996). [CrossRef] [PubMed]
  10. M. Froggatt and J. Moore, �??High resolution strain measurement in optical fiber with Rayleigh scatter,�?? Appl. Opt. 37, 1735�??1740 (1998). [CrossRef]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, �??High-speed optical frequency-domain imaging,�?? Opt. Express 11, 2953�??2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953. [CrossRef] [PubMed]
  12. M. Wegmuller, M. Legre, and N. Gisin, �??Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,�?? J. Lightwave Technol. 20 828�??835 (2002). [CrossRef]
  13. A. J. Rogers, �??Polarization optical time-domain reflectometry,�?? Electron. Lett. 16 489�??490 (1980). [CrossRef]
  14. M. E. Froggatt, B. J. Soller, D. G. Gifford and M. S. Wolfe, �??Correlation and keying of rayleigh scatter for loss and temperature sensing in parallel optical netwroks,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2004), paper PDP17.
  15. J. Qian and W. Huang, �??Coupled-mode theory for LP modes,�?? J. Lightwave Technol. 4 619�??625 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited