OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 7832–7839

1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber

Hiroki Takesue and Kyo Inoue  »View Author Affiliations

Optics Express, Vol. 13, Issue 20, pp. 7832-7839 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spontaneous four-wave mixing in a dispersion-shifted fiber (DSF) is a promising approach for generating quantum-correlated photon pairs in the 1.5 μm band. However, it has been reported that noise photons generated by the spontaneous Raman scattering process degrade the quantum correlation of the generated photons. This paper describes the characteristics of quantum-correlated photon pair generation in a DSF cooled by liquid nitrogen. With this technique, the number of noise photons was sufficiently suppressed and the ratio of true coincidence to accidental coincidence was increased to ~30.

© 2005 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics

ToC Category:
Research Papers

Original Manuscript: August 31, 2005
Revised Manuscript: September 15, 2005
Published: October 3, 2005

Hiroki Takesue and Kyo Inoue, "1.5-µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005)

Sort:  Journal  |  Reset  


  1. A. K. Ekert, �??Quantum cryptography based on Bell�??s theorem,�?? Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  2. C. H. Bennett, G. Brassard, N. D. Mermin, �??Quantum cryptography without Bell�??s theorem,�?? Phys. Rev. Lett. 68, 557-559 (1992). [CrossRef] [PubMed]
  3. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, �??Quantum repeaters: the role of imperfect local operations in quantum communication,�?? Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications,�?? IEEE Photonics Technol. Lett. 14, 983-985 (2002). [CrossRef]
  5. K. Inoue and K. Shimizu, �??Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering,�?? Jpn. J. Appl. Phys. 43, 8048-8052 (2004). [CrossRef]
  6. J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, �??Quantum-correlated twin photons from microstructure fiber,�?? Opt. Express 12, 3086-3094 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086</a>. [CrossRef] [PubMed]
  7. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications: improved generation of correlated photons,�?? Opt. Express 12, 3737-3744 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737</a>. [CrossRef] [PubMed]
  8. J. G. Rarity, J. Fulconis, J. Duligali, W. J. Wadsworth, and P. St. J. Russell, �??Photonic crystal fiber source of correlated photon pairs,�?? Opt. Express 13, 534-544 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 13-2-534">http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 13-2-534</a>. [CrossRef] [PubMed]
  9. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, �??Measurement of co- and crosspolarized Raman spectra in silica fiber for small detunings,�?? Opt. Express 13, 2236-2244 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-2236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-2236</a>. [CrossRef] [PubMed]
  10. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. Russell, and J. G. Rarity, �??High brightness single mode source of correlated photons pairs using a photonic crystal fiber,�?? arXiv: quant-ph/0507111.
  11. H. Takesue and K. Inoue, �??Generation of polarization entangled photon pairs and violation of Bell�??s inequatilty using spontaneous four-wave mixing in fiber loop,�?? Phys. Rev. A 70, 031802(R) (2004). [CrossRef]
  12. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, �??Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,�?? Phys. Rev. Lett. 94 053601 (2005). [CrossRef] [PubMed]
  13. H. Takesue and K. Inoue, �??Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,�?? arXiv: quant-ph/0508215.
  14. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, �??Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,�?? Opt. Lett. 30, 1201-1203 (2005). [CrossRef] [PubMed]
  15. Y. Yamamoto and K. Inoue, �??Noise in amplifiers,�?? IEEE J. Lightwave Technol. 21, 2895-2915 (2003). [CrossRef]
  16. J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr, S. J. McNab, and Y. A. Vlasov, �??Spontaneous Raman scattering in ultrasmall silicon waveguides,�?? Opt. Lett. 29, 2755-2757 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited