OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 8015–8024

Modeling of the χ (2) susceptibility time-evolution in thermally poled fused silica

A. Kudlinski, Y. Quiquempois, and G. Martinelli  »View Author Affiliations

Optics Express, Vol. 13, Issue 20, pp. 8015-8024 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dynamics of the second-order nonlinearity induced in a thermally poled InfrasilTM silica glass is experimentally and theoretically studied. 200 μm and 500 μm-thick samples have been poled for different durations varying from 1 minute to 100 minutes. After the poling process, the magnitude and the spatial distribution of the induced χ(2) susceptibility have been characterized accurately with the “layer peeling” method. A two-charge carrier model with an electric field dependant charge injection is used to explain the experimental time-evolution of the χ(2) profiles. A good agreement between experimental results and simulations is reported.

© 2005 Optical Society of America

OCIS Codes
(160.2900) Materials : Optical storage materials
(160.6030) Materials : Silica
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Research Papers

Original Manuscript: August 22, 2005
Revised Manuscript: September 19, 2005
Published: October 3, 2005

A. Kudlinski, Y. Quiquempois, and G. Martinelli, "Modeling of the �?(2) susceptibility time-evolution in thermally poled fused silica," Opt. Express 13, 8015-8024 (2005)

Sort:  Journal  |  Reset  


  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, �??Large second order nonlinearity in poled fused silica,�?? Opt. Lett. 16, 1732-1734 (1991). [CrossRef] [PubMed]
  2. P. G. Kazansky, and P. St. J. Russel, �??Thermally poled glass: frozen-in electric field or oriented dipoles?,�?? Opt. Commun. 110, 611-614 (1994). [CrossRef]
  3. D. Faccio, V. Pruneri, and P. G. Kazansky, �??Dynamics of the second order nonlinearity in thermally poled silica glass,�?? Appl. Phys. Lett. 79, 2687-2689 (2001). [CrossRef]
  4. A. Kudlinski, Y. Quiquempois, and G. Martinelli, �??Time evolution of the second-order nonlinear profile within thermally-poled silica samples,�?? Opt. Lett. 30, 1039-1041 (2005). [CrossRef] [PubMed]
  5. A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, �??Photocurrent, space-charge buildup and field emission in alkali crystals,�?? Phys. Rev. 91, 568-579 (1953). [CrossRef]
  6. T. G. Alley, R. A. Myers, and S. R. J. Brueck, �??Space charge dynamics in thermally poled fused silica,�?? J. Non Cryst. Solids 242, 165-176 (1998). [CrossRef]
  7. A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, �??Microscopic model for the second order nonlinearity creation in thermally poled bulk silica glasses,�?? in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in GlassWaveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC3, Monterey, September 1-3, 2003.
  8. X. Liu, X. Sun, and M. Zhang, �??Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,�?? Jpn. J. Appl. Phys. 39, 4881-4883 (2000). [CrossRef]
  9. M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, �??The thickness evolution of second order nonlinear layer in thermally poled fused silica,�?? Opt. Commun. 189, 161-166 (2001). [CrossRef]
  10. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, �??Poling of silica with silver containing electrodes,�?? Electron. Lett. 36, 1635-1636 (2000). [CrossRef]
  11. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, �??Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,�?? Appl. Phys. Lett. 83, 3623-3625 (2003). [CrossRef]
  12. W. Margulis, and F. Laurell, �??Interferometric study of poled glass under etching,�?? Opt. Lett. 21, 1786-1788 (1996). [CrossRef] [PubMed]
  13. Heraeus technical documentation, Transparent and Opaque Fused Silica, Heraeus Quartzschmelze GmbH, D-63450 Hanau 1, Germany.
  14. D. W. Shin and M. Tomozawa, �??Electrical and dielectric relaxation in silica glasses at low temperature,�?? J. Non Cryst. Solids 211, 237-249 (1997). [CrossRef]
  15. Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis and I.C.S. Carvalho, �??Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,�?? Appl. Phys. Lett. 86, 181106 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (2304 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited