OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 8025–8031

Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes

T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara  »View Author Affiliations

Optics Express, Vol. 13, Issue 20, pp. 8025-8031 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate passive mode locking of solid-state lasers by saturable absorbers based on carbon nanotubes (CNT). These novel absorbers are fabricated by spin-coating a polymer doped with CNTs onto commercial dielectric laser-mirrors. We obtain broadband artificial saturable absorber mirrors with ultrafast recovery times without the use of epitaxial growth techniques and the well-established spin-coating process allows the fabrication of devices based on a large variety of substrate materials. First results on passive mode locking of Nd:glass and Er/Yb:glass lasers are discussed. In the case of Er/Yb:glass we report the to our knowledge shortest pulse generated in a self-starting configuration based on Er/Yb:bulk-glass: 68 fs (45 fs Fourier-limit) at 1570 nm wavelength at a pulse-repetition rate of 85 MHz.

© 2005 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.4330) Materials : Nonlinear optical materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(230.4170) Optical devices : Multilayers

ToC Category:
Research Papers

Original Manuscript: August 23, 2005
Revised Manuscript: September 20, 2005
Published: October 3, 2005

T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, "Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes," Opt. Express 13, 8025-8031 (2005)

Sort:  Journal  |  Reset  


  1. E. P. Ippen, �??Principle of Passive Mode Locking,�?? Appl. Phys B, 58, 159-170 (1994). [CrossRef]
  2. L. R. Brovelli, U. Keller, T. H. Chiu, �??Design and operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid state lasers,�?? J. Opt. Soc. Am. B 12, 311-322 (1995). [CrossRef]
  3. U. Siegner, R. Fluck, G. Zhang, U. Keller, "Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide,�?? Appl. Phys. Lett. 69, 2566-8 (1996). [CrossRef]
  4. B. Collins, K. Bergmann, S. T. Cundiff, S. Tsuda, J. N. Kunz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, �??Short Cavity Erbium/Ytterbium fiber Lasers mode-Locked with a Saturable Bragg Reflector,�?? IEEE J. Sel. Top. Quantum Electron. 3, 1065 (1997). [CrossRef]
  5. H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, U. Keller, �??Role of implantation induced defects on the response time of semiconductor saturable absorbers,�?? Appl. Phys. Lett. 75, 1437-1439 (1999). [CrossRef]
  6. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang , X.-C. Zhang, �??Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,�?? Appl. Phys. Lett. 81, 975-977 (2002). [CrossRef]
  7. J-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, O. Jost, L. Capes, �??Ultrafast carrier dynamics in single-wall carbon nanotubes,�?? Phys. Rev. Lett. 90, 057404 (2003). [CrossRef] [PubMed]
  8. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, H. Mitsu, �??Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,�?? Adv. Mater. 15, 534 (2003). [CrossRef]
  9. Y. Sakakibara, S. Tatsuura, H. Kataura, M.Tokumoto, Y. Achiba, �??Near-infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method,�?? Jpn. J. Appl. Phys. 42, 494-496 (2003). [CrossRef]
  10. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M.Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi, �??Mode-locked Fiber Lasers based on a Saturable Absorber Incorporating Carbon Nanotubes,�?? OSA Trends in Optics and Photonics (TOPS) Vol.86, pd44, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2003).
  11. N. N. Il�??ichev, E. D. Obraztsova, S. V. Garnov, S. E. Mosaleva, �??Nonlinear transmission of single-wall carbon nanotubes in heavy water at wavelength of 1.54 μm and self-mode locking in a Er3+:glass laser obtained using a passive nanotube switch,�?? Quantum Electron. 34, 572-574 (2004). [CrossRef]
  12. Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, M. Tokumoto, Jpn. J. Appl. Phys. 44, 1621 (2005). [CrossRef]
  13. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, �??Sub-200 fs pulsed erbium-doped fiber laser using a carbon nanotube- polyvinylalcohol mode-locker�??, in submission.
  14. G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, R. E. Smalley, �??Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,�?? Phys. Rev. Lett. 92, 117402 (2004). [CrossRef] [PubMed]
  15. Carbon Nanotubes: Synthesis, Structure, Properties, and Application, eds. M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer-Verlag, Berlin, 2001) Topics in Appl. Phys. Vol. 80 (2001). [CrossRef]
  16. H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Otsuka, R. Sen, S. Suzuki, Y. Achiba, Carbon 38, 1691(2000). [CrossRef]
  17. F. J. Grawert, J. T. Gopinath, F. �?�??. Ilday, H. M. Shen, E. P. Ippen, F. X. Kaertner, S. Akiyama, J. Liu, K. Wada, L. C. Kimerling, �??220-fs erbium-ytterbium:glass laser mode locked by a broadband low-loss silicon/germanium saturable absorber,�?? Opt. Lett. 30, 329-331 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited