OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 8146–8163

Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques

Brian E. Applegate, Changhuei Yang, and Joseph A. Izatt  »View Author Affiliations

Optics Express, Vol. 13, Issue 20, pp. 8146-8163 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Molecular contrast optical coherence tomography (MCOCT) is an extension of OCT in which contrast resulting from the interaction of light with a contrast agent, leads to the enhanced visualization of a specific morphology or biochemical process in a target specimen. In order to improve the sensitivity and specificity of MCOCT, several spectroscopic techniques have recently been introduced which depend upon coherent detection of scattered light which has been modified by interaction with the molecules of interest in a sample. These techniques include harmonic generation, coherent anti-Stokes Raman scattering, linear absorption, and several different forms of pump-probe spectroscopy. We have developed a theoretical framework to facilitate the comparison of the sensitivity of different MCOCT techniques. This framework is based upon the observation that since the noise floor is defined by the reference field power in a shot-noise limited OCT system, the relevant comparison among the techniques is isolated to the available molecular contrast signal power and the algorithm used to extract the signal. We have derived theoretical expressions for the signal power and signal-to-noise ratio for the MCOCT techniques described in the literature based on molecular spectroscopy, as well as several new techniques introduced here.

© 2005 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Research Papers

Original Manuscript: June 21, 2005
Revised Manuscript: September 21, 2005
Published: October 3, 2005

Brian Applegate, Changhuei Yang, and Joseph Izatt, "Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques," Opt. Express 13, 8146-8163 (2005)

Sort:  Journal  |  Reset  


  1. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001). [PubMed]
  2. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  3. S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, J. G. Fujimoto, "Imaging developing neural morphology using optical coherence tomography.," J. Neurosci. Methods 70, 65-72 (1996), <a href="http://research.bmn.com/medline/search/results?uid=MDLN.97137646">http://research.bmn.com/medline/search/results?uid=MDLN.97137646</a>. [CrossRef] [PubMed]
  4. J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images," Dermatology 198, 355-361 (1999). [CrossRef]
  5. T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, J. A. Izatt, "Optical coherence tomography - A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation 106, 2771-2774 (2002). [CrossRef] [PubMed]
  6. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (1999). [CrossRef]
  7. D. J. Faber, E. G. Mik, M. C. G. Aalders, T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003). [CrossRef] [PubMed]
  8. D. J. Faber, E. G. Mik, M. C. G. Aalders, T. G. van Leeuwen, "Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography," Opt. Lett. 30, 1015-1017 (2005). [CrossRef] [PubMed]
  9. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003). [CrossRef] [PubMed]
  10. B. E. Applegate, C. Yang, A. M. Rollins, J. A. Izatt, "Polarization resolved second harmonic generation optical coherence tomography in collagen," Opt. Lett. 29, 2252-2254 (2004). [CrossRef] [PubMed]
  11. Y. Jiang, I. Tomov, Y. Wang, Z. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004). [CrossRef] [PubMed]
  12. C. Vinegoni, J. S. Bredfeldt, D. L. Marks, S. A. Boppart, "Nonlinear optical coherence enhancement for optical coherence tomography," Opt. Express 12, 331-341 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-331. [CrossRef] [PubMed]
  13. J. S. Bredfeldt, C. Vinegoni, D. L. Marks, S. A. Boppart, "Molecularly sensitive optical coherence tomography," Opt. Lett. 30, 495-497 (2005). [CrossRef] [PubMed]
  14. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6597. [CrossRef] [PubMed]
  15. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, S. A. Boppart, "Engineered Microsphere Contrast Agents for Optical Coherence Tomography," Opt. Lett. 28, 1546-1548 (2003). [CrossRef] [PubMed]
  16. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, Y. Xia, "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Lett. 5, 473-477 (2005). [CrossRef] [PubMed]
  17. M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, "Sensitivity advantage of swept-source and Fourier-domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>. [CrossRef] [PubMed]
  18. R. G. Byer, "Parametric oscillators and nonlinear materials'" In Nonlinear Optics, P. G. Harper,B. S. Wherrett, Eds. (Academic: London, 1977).
  19. R. W. Boyd, Nonlinear Optics. (Academic: San Diego, CA, 1992).
  20. P. Stoller, P. M. Celliers, K. M. Reiser, A. M. Rubenchik, "Quantitative Second-Harmonic Generation Microscopy in Collagen," Appl. Optics 42, 5209 (2003). [CrossRef]
  21. W. Mohler, A. C. Millard, P. J. Campagnola, "Second Harmonic Generation Imaging of Endogenous Structural Proteins," Methods 29, 97-109 (2003). [CrossRef] [PubMed]
  22. D. L. Marks, S. A. Boppart, "Nonlinear InterferometricVibrational Imaging," Phys. Rev. Lett. 92, 1239051-1239054 (2004). [CrossRef]
  23. H.-o. Hamaguchi, "Nonlinear Raman Spectroscopy'" In Nonlinear Spectroscopy for Molecular Structure Determination, R. W. Field, E. H. A. J. P. Maier,S. Tsuchiya, Eds. (Blackwell Science, Ltd: Malden, MA, 1998).
  24. A. Owyoung, P. S. Peercy, "Precise Characterixation of the Raman nonlinearity in benzene using nonlinear interferometry," J. Appl. Physics 48, 674-677 (1977). [CrossRef]
  25. P. F. Tian, W. S. Warren, "Ultrafast measurement of two-photon absorption by loss modulation," Opt. Lett. 27, 1634--1636 (2002). [CrossRef]
  26. A. A. Heikal, S. T. Hess, W. W. Webb, "Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid-base specificity," Chem. Phys. 274, 37-55 (2001). [CrossRef]
  27. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434�??1436 (2003). [CrossRef] [PubMed]
  28. C. Yang, L. E. L. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, J. A. Izatt, "Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent," Opt. Lett. 29, 2016-2018 (2004). [CrossRef] [PubMed]
  29. M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, "Light- absorbing properties, stability, and spectral stabilization of indocyanine green," J. Appl. Physiol. 40, 575-583 (1976). [PubMed]
  30. S. Reindl, A. Penzkofer, "Triplet quantum yield determination by picosecond laser double-laser fluorescence excitation," Chem. Phys. 213, 429-438 (1996). [CrossRef]
  31. J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and Dynamics. (Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1989).
  32. S. Delysse, J.-M. Nunzi, C. Scala-Valero, "Picosecond optical Kerr ellipsometry determination of S1-Sn absorption spetra of xanthene dyes," Appl. Phys. B 66, 439-444 (1998). [CrossRef]
  33. J. Barroso, A. Costela, I. Garcia-Moreno, R. Sastre, "Wavelength dependence of the nonlinear absorption properties of laser dyes in solid and liquid solutions," Chem. Phys. 238, 257-272 (1998). [CrossRef]
  34. N. Srinivas, V. Rao, N. Rao, "Saturable and reverse saturable absorption of Rhodamine B in methanol and water," J. Opt. Soc. Am. B 20, 2470-2479 (2003). [CrossRef]
  35. C. Tanielian, C. Wolff, "Determination of the Parameters Controlling Singlet Oxygen Production via Oxygen and Heavy-Atom Enhancement of Triplet Yields," J. Phys. Chem. 99, 9831-9837 (1995). [CrossRef]
  36. B. E. Applegate, J. A. Izatt, Department of Biomedical Engineering, Duke University, Durham, NC 27708, are preparing a manuscript to be called "Transient Absorption and Lifetime Imaging with Ground State Recovery Pump-Probe Optical Coherence Tomography."
  37. C. Yang, M. A. Choma, L. E. Lamb, J. D. Simon, J. A. Izatt, "Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent," Opt. Lett. 29, 1396-1398 (2004). [CrossRef] [PubMed]
  38. C. Yang, "Molecular Contrast Optical Coherence Tomography: A Review," Photochem Photobiol 81, 215-237 (2005). [CrossRef]
  39. B. Hermann, K. K. Bizheva, A. Unterhuber, B. Považay, H. Sattmann, L. Schmetterer, A. F. Fercher, W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1677">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1677</a>. [CrossRef] [PubMed]
  40. C. Xu, D. L. Marks, M. N. Do, S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790- 4803 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4790">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4790.</a>. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited