OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 8172–8178

Low noise wavelength conversion of femtosecond pulses with dispersion micro-managed holey fibers

Fei Lu and Wayne H. Knox  »View Author Affiliations

Optics Express, Vol. 13, Issue 20, pp. 8172-8178 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally compared three methods of continuum generation that can provide wavelength conversion through anti-Stokes radiation (ASR). The three methods are: dispersion micro-managed (DMM) holey fiber, tapered fiber and long holey fiber with constant core diameter. We investigated the spectral shape and the amplitude fluctuations due to the broadband noise that is amplified during the nonlinear conversion process. The results show that the DMM method can shift wavelengths with up to 20 dB lower broadband noise compared with the other methods, at the same time with controllable wavelength shift and bandwidth, and without spectral substructure.

© 2005 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Research Papers

Original Manuscript: August 24, 2005
Revised Manuscript: September 21, 2005
Published: October 3, 2005

Fei Lu and Wayne Knox, "Low noise wavelength conversion of femtosecond pulses with dispersion micro-managed holey fibers," Opt. Express 13, 8172-8178 (2005)

Sort:  Journal  |  Reset  


  1. J. K. Ranka, R. S. Windeler and A. J. Stentz, �??Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,�?? Opt. Lett. 25, 25-27 (2000) [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000) [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber,�?? Opt. Lett, 26, 608-610 (2001) [CrossRef]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall and S. T. Cundiff, �??Carrier- Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,�?? Science, 288, 635-639 (2000) [CrossRef] [PubMed]
  5. G. McConnell, �??Confocal laser scanning fluorescence microscopy with a visible continuum source,�?? Opt. Express, 12, 2844-2850 (2004). [CrossRef] [PubMed]
  6. H. N. Paulsen, K. M. Hilligse, J. Thgersen, S. R. Keiding, J. J. Larsen, �??Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,�?? Opt. Lett. 28, 1123-1125 (2003) [CrossRef] [PubMed]
  7. J. A. Palero, V. O. Boer, J. C. Vijverberg and H. C. Gerritsen, �??Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source,�?? Opt. Express, 13, 5363- 5368 (2005) [CrossRef] [PubMed]
  8. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett, 90, 113904-1(2003) [CrossRef] [PubMed]
  9. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002) [CrossRef]
  10. T. M. Fortier, J. Ye, S. T. Cundiff and R. S. Windeler, �??Nonlinear phase noise generated in air-silica microstructure fiber and its effects on carrier-envelope phase,�?? Opt. Lett. 27, 445-447 (2002) [CrossRef]
  11. N. R. Newbury, B. R. Washburn, K. L. Corwin and R. S. Windeler, �??Noise amplification during supercontinuum generation in microstructure fiber,�?? Opt. Lett. 28, 944-946 (2003) [CrossRef] [PubMed]
  12. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002). [CrossRef]
  13. F. Lu, Y. Deng, W. H. Knox, �??Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,�?? Opt. Lett. 30, 1566-1568 (2005) [CrossRef] [PubMed]
  14. A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001) [CrossRef] [PubMed]
  15. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux and P. St. J. Russell, �??Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,�?? Opt. Lett. 26, 1137-1139 (2001) [CrossRef]
  16. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, �??Tapered photonic crystal fibers,�?? Opt. Express, 12, 776-784 (2004). [CrossRef] [PubMed]
  17. I. Cristiani, R. Tediosi, L. Tartara and V. Degiorgio, �??Dispersive wave generation by solitons in microstructured optical fibers,�?? Opt. Express, 12, 124-135 (2004). [CrossRef] [PubMed]
  18. F. Lu and W. H. Knox, J. Opt. Soc. Am. B (to be submitted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited