OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 8198–8203

Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals

Fang Bo, Guoquan Zhang, and Jingjun Xu  »View Author Affiliations


Optics Express, Vol. 13, Issue 20, pp. 8198-8203 (2005)
http://dx.doi.org/10.1364/OPEX.13.008198


View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated superluminal light propagation with a negative group velocity of –5.7 m/s in a photorefractive Bi12SiO20 crystal by using the dispersive phase coupling effect in a nondegenerate two-wave mixing process. To the best of our knowledge, this is the first experimental demonstration of superluminal light propagation at room temperature in solids by using a classical wave mixing technique. In addition, we showed the tunability of the group velocity of light between the negative (superluminal light) and the positive (subluminal light) by simply tuning the experimental conditions such as the frequency of the coupling beam, the incident intensity, and the externally applied electric fields.

© 2005 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Research Papers

History
Original Manuscript: August 16, 2005
Revised Manuscript: September 21, 2005
Published: October 3, 2005

Citation
Fang Bo, Guoquan Zhang, and Jingjun Xu, "Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals," Opt. Express 13, 8198-8203 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-20-8198


Sort:  Journal  |  Reset  

References

  1. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).
  2. E. L. Bolda, R. Y. Chiao, and J. C. Garrison, �??Two theorems for the group velocity in dispersive media,�?? Phys. Rev. A 48, 3890-3894 (1993). [CrossRef] [PubMed]
  3. P.W. Milonni, Fast Light, Slow Light and Left-handed Light (Institute of Physics Publishing, Bristol and Philadelphia, 2005).
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, �??Light speed reduction to 17 meters per second in an ultracold atomic gas,�?? Nature 397, 594-598 (1999). [CrossRef]
  5. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, �??Ultraslow group velocity and enhanced nonlinear optical effects in a coherently diriven hot atomic gas,�?? Phys. Rev. Lett. 82, 5229-5232 (1999). [CrossRef]
  6. Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, �??Observation of coherent optical information storage in an atomic medium using halted light pulses,�?? Nature 409, 490-493 (2001). [CrossRef] [PubMed]
  7. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, �??Observation of ultraslow and stored light pulses in a solid,�?? Phys. Rev. Lett. 88, 023602 (2002). [CrossRef] [PubMed]
  8. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, and M. D. Lukin, �??Storage of light in atomic vapor,�?? Phys. Rev. Lett. 86, 783-786 (2001). [CrossRef] [PubMed]
  9. L. Deng, E. W. Hagley, M. Kozuma, D. Akamatsu, and M. G. Payne, �??Achieving very-low-loss group velocity reduction without electromagnetically induced transparency,�?? Appl. Phys. Lett. 81, 1168-1170 (2002). [CrossRef]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, �??Observation of ultraslow light propagation in a ruby crystal at room temperature,�?? Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  11. C. G. B. Garrett and D. E. McCumber, �??Propagation of a Gaussian light pulse through an anomalous dispersion medium,�?? Phys. Rev. A 1, 305-313 (1970). [CrossRef]
  12. S. Chu and S. Wong, �??Linear pulse propagation in an absorbing medium,�?? Phys. Rev. Lett. 48, 738-741 (1982). [CrossRef]
  13. L. J. Wang, A. Kuzmich, and A. Dogariu, �??Gain-assisted superluminal light propagation,�?? Nature 406, 277-279 (2000). [CrossRef] [PubMed]
  14. S. E. Harris, �??Electromagnetically induced transparency,�?? Phys. Today 50, 36-42 (1997). [CrossRef]
  15. A. M. Akulshin, S. Barreiro and A. Lezama, �??Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,�?? Phys. Rev. A 57, 2996-3002 (1998). [CrossRef]
  16. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, �??Superluminal and slow light propagation in a room-temperature solid,�?? Science 301, 200-202 (2003). [CrossRef] [PubMed]
  17. M. A. I. Talukder, Y. Amagishi, and M. Tomita, �??Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium,�?? Phys. Rev. Lett. 86, 3546-3549 (2001). [CrossRef] [PubMed]
  18. Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, and T. Kuga, �??Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity,�?? Phys. Rev. Lett. 89, 233001 (2002). [CrossRef] [PubMed]
  19. G. S. Agarwal, T. N. Dey, and S. Menon, �??Knob for changing light propagation from subluminal to superluminal,�?? Phys. Rev. A 64, 053809 (2001). [CrossRef]
  20. K. Kim, H. S. Moon, Ch. Lee, S. K. Kim, and J. B. Kim, �??Observation of arbitary group velocities of light from superluminal to subluminal on a single atomic transition line,�?? Phys. Rev. A 68, 013810 (2003). [CrossRef]
  21. E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, �??Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,�?? Phys. Rev. A 69, 063808 (2004). [CrossRef]
  22. H. Kang, G. Hernandez, and Y. Zhu, �??Superluminal and slow light propagation in cold atoms,�?? Phys. Rev. A 70, 011801 (2004). [CrossRef]
  23. G. Zhang, R. Dong, and J. Xu, �??Group velocity reduction of light pulses in photorefractive two-wave mixing,�?? Chin. Phys. Lett., 1725-1728 (2003). [CrossRef]
  24. G. Zhang, R. Dong, F. Bo, and J. Xu, �??Slowdown of group velocity of light by means of phase coupling in photorefractive two-wave mixing,�?? Appl. Opt. 43, 1167-1173 (2004). [CrossRef] [PubMed]
  25. G. Zhang, F. Bo, R. Dong, and J. Xu, �??Phase-coupling-induced ultraslow light propagation in solids at room temperature,�?? Phys. Rev. Lett. 93, 133903 (2004). [CrossRef] [PubMed]
  26. E. Podivilov, B. Sturman, A. Shumelyuk and S. Odoulov, �??Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,�?? Phys. Rev. Lett. 91, 083902 (2003). [CrossRef] [PubMed]
  27. A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov and K. Buse, �??Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,�?? Phys. Rev. Lett. 93, 243604 (2004). [CrossRef]
  28. Z. Deng and P. R. Hemmer, �??Investigation of room-temperature slow light in photorefractives for optical buffer applications,�?? in Advanced Optical and Quantum Memories and Computing, Hans J. Coufal and Zameer U. Hasan, eds., Proc. SPIE 5362, 81-89 (2004). [CrossRef]
  29. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited