OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 8296–8307

Bidimensional chromophores for photorefractive polymers with working wavelength in the near IR

P. Acebal, S. Blaya, and L. Carretero  »View Author Affiliations

Optics Express, Vol. 13, Issue 20, pp. 8296-8307 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study we show six bidimensional chromophores designed for high T g photorefractive polymers with a working wavelength in the near IR. The macroscopic optical properties of a poled polymer which contains the designed chromophores were expressed as a function of the microscopic properties of the chromophores, which were calculated using quantum mechanical methods. Later, the diffraction efficiency of a holographic recording and readout experiment was simulated using the Montemezzani equation for anisotropic materials. Results show that high diffraction efficiencies could be obtained for three important working wavelengths (1064, 1300 and 1500 nm) using these chromophores. Of particular interest are the result for the PMC3b derivative at the telecommunication windows of 1300 nm and 1500 nm and the result for PMC1a derivative at the light source wavelength of 1064 nm.

© 2005 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.2900) Holography : Optical storage materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5330) Nonlinear optics : Photorefractive optics
(250.2080) Optoelectronics : Polymer active devices

ToC Category:
Research Papers

Original Manuscript: June 1, 2005
Revised Manuscript: September 26, 2005
Published: October 3, 2005

P. Acebal, S. Blaya, and L. Carretero, "Bidimensional chromophores for photorefractive polymers with working wavelength in the near IR," Opt. Express 13, 8296-8307 (2005)

Sort:  Journal  |  Reset  


  1. W. E. Moerner and S. M. Silence, �??Polymeric Photorefractive Materials,�?? Chem. Rev. 94, 127�??155 (1994). [CrossRef]
  2. O. Ostroverkhova and W. M. WE, �??Organic photorefractives: Mechanisms, materials, and applications,�?? Chem. Review 104, 3267�??3314 (2004). [CrossRef]
  3. B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, and N. Peyghambarian, �??Highly efficient photorefractive polymers for dynamic holography,�?? Opt. Eng. 34, 2213�??2223 (1995). [CrossRef]
  4. E. Mecher, F. Gallego-Gomez, H. Tillmann, H. Horhold, J. Hummelen, and K. Meerholz, �??Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,�?? Nature 418, 959�??964 (2002). [CrossRef] [PubMed]
  5. O. Ostroverkhova, W. Moerner, M. He, and R. Twieg, �??High-performance photorefractive organic glass with near-infrared sensitivity,�?? Appl. Phys. Lett. 82, 3602�??3604 (2003). [CrossRef]
  6. E. Mecher, F. Gallego-Gomez, K. Meerholz, H. Tillmann, H. Horhold, and J. Hummelen, �??Photophysical and redox NIR-sensitivity enhancement in photorefractive polymer composites,�?? ChemPhysChem 5, 277�??284 (2004). [CrossRef] [PubMed]
  7. M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schulzgen, N. Peyghambarian, G. W. GA, S. Barlow, and S. M. SR, �??High-performance photorefractive polymer operating at 975 nm,�?? Applied Physics Letter 85, 1095�??1097, (2004). [CrossRef]
  8. S. Tay, J. Thomas, M. E. M, G. Li, R. Kippelen, S. Marder, G. Meredith, A. Schulzgen, and N. Peyghambarian, �??Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm,�?? Appl. Phys. Lett. 85, 4561�??4563, (2004). [CrossRef]
  9. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, �??Orientationally enhanced photorefractive effect in polymers,�?? J. Opt. Soc. Am. 11, 320, (1994). [CrossRef]
  10. R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. D. Voe, P. M. Cotts, H. Horn, J. E. Rice, and D. M. Burland, �??Design of optimized photorefractive polymers: a novel class of chromophores,�?? J. Chem. Phys. 105, 10, 637�??10, 647 (1996). [CrossRef]
  11. R. Bittner and C. Br¨auchle and K. Meerholz, �??Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers,�?? Appl. Opt. 37, 2843�??2851 (1998). [CrossRef]
  12. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, �??Temperature-induced changes in photopolymer volume holograms,�?? Appl. Phys. Lett. 73, 1337�??1339 (1998). [CrossRef]
  13. O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, �??Role of temperature in controlling performance of photorefractive organic glasses,�?? ChemPhysChem 4, 732�??744 (2003). [CrossRef] [PubMed]
  14. P. Acebal, S. Blaya, and L. Carretero, �??High T-g photorefractive polymers: Influence of the chromophores�?? beta tensor,�?? J. Chem. Phys. 121, 8602�??8610 (2004). [CrossRef] [PubMed]
  15. G. Montemezzani and M. Zgonik, �??Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,�?? Phys. Rev. E 55, 1035�??1047 (1997). [CrossRef]
  16. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell. Sys. Tech. J. 48, 2909�??2945 (1969).
  17. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, �??Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,�?? J. Opt. Soc. Am. B 4, 968�??976 (1987). [CrossRef]
  18. R. Wortmann and D. M. Bishop, �??Effective polarizabilities and local field correctionsfor nonlinear experiments in condensed media,�?? J. Chem. Phys. 108, 1001�??1007 (1998). [CrossRef]
  19. V. May and O. Khn, Charge and energy transfer dynamics in molecular system (Wiley-VCH, 2000).
  20. J. S. Schildkraut and A. V. Buettner, �??Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,�?? J. Appl. Phys. 72, 1888�??1893 (1992). [CrossRef]
  21. T. Daubler, R. Bittner, K. Meerholz, V. Cimrova, and D. Neher, �??Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,�?? Phys. Rev. B 61 , 515�??13, 527 (2000). [CrossRef]
  22. B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledouxx, J. Zyss, and A. K. Y. Jen, �??The molecular and supramolecular engineering of polymeric electro-optic materials,�?? Chem. Phys. 245, 35�??50 (1999). [CrossRef]
  23. S. P. Karna and A. T. Yeates, eds., Nonlinear Optical Materials. Theory and Modeling (American Chemical Society, Washington, 1996). [CrossRef]
  24. J. L. Oudar and D. S. Chemla, �??Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,�?? J. Chem. Phys. 66, 2664�??2668 (1977). [CrossRef]
  25. M. Yang and B. Champagne, �??Large Off-diagonal contribution to the second-order optical nonlinearities of �?-shaped molecules,�?? J. Phys. Chem. A 107, 3942�??3951 (2003). [CrossRef]
  26. P. Acebal, S. Blaya, and L. Carretero, �??Dipyrromethene-BF2 complexes with optimized electrooptic propeties,�?? Chem. Phys. Lett. 382, 489�??495 (2003). [CrossRef]
  27. P. Acebal, S. Blaya, L. Carretero, and A. Fimia, �??Upper limits of dielectric permittivity modulation in bacteriorhodopsin films,�?? Phys. Rev. E 72, 011909 (2005). [CrossRef]
  28. W. J. Hehre, L. Radom, P. V. R. Schleyer, and J. A. Pople, Ab initio molecular orbital theory (JohnWiley & Sons Inc., New York, 1986).
  29. M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Menucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petereson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 98, Revision A.7, Gaussian, Inc, Pittsburg PA, 1998.
  30. R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, �??High-efficiency pyrromethene doped solid-state dye lasers,�?? Appl. Phys. Lett. 63, 877�??879 (1993). [CrossRef]
  31. M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano, and Y. Urano, �??Synthesis and optical properties of a new class of pyrromethene-BF2 complexes fused with bicyclo rings and benzo derivatives,�?? Tetrahedron Lett. 42, 6711�??6713 (2001). [CrossRef]
  32. G. Jones, Z. Huang, S. Kumar, and D. Pacheco, �??Fluorescence and Lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,�?? in Proc. Solid State Lasers XI, vol. 4630 (SPIE, 2002).
  33. K. Rurack, M. Kollmannsberger, and J. Daub, �??Molecular Switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye,�?? Angew. Chem. Int. Ed. 40, 385�??387 (2001). [CrossRef]
  34. M. Shah, K. Thangaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, �??Pyrromethene-BF2 Complexes as laser dyes:1,�?? Heteroatom Chemistry 1, 389�??399 (1990). [CrossRef]
  35. P. Acebal, S. Blaya, and L. Carretero, �??Theoretical study of second-order non-linear optical propeties of pyrromethene dyes for photonic application,�?? J. Phys. B: At. Mol. Opt. Phys. 36, 2445�??2454 (2003). [CrossRef]
  36. T. L. Arbeloa, F. L. Arbeloa, I. L. Arbeloa, I. Garc´ýa-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, �??Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,�?? Chem. Phys. Lett. 299, 315�??321 (1999). [CrossRef]
  37. H. S. Nalwa and S. Miyata, Nonlinear optics of organic molecules and polymers (CRC Press, London, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited