OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8332–8338

Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities

Jaeyoun Kim, Gang L. Liu, Yu Lu, and Luke P. Lee  »View Author Affiliations

Optics Express, Vol. 13, Issue 21, pp. 8332-8338 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on numerical studies of apertured metallic nanocavity structures, we describe a new intra-particle plasmonic interaction pathway that couples the plasmon resonance modes of the aperture edge and the cavity. In contrast to the inter-particle coupling schemes that require precisely arrayed nanoparticles, this intra-particle coupling scheme achieves the tunability in plasmonic resonance wavelength using a single standalone nanostructure. In addition, when the aperture edge is made sharp, it functions dually as a tip that amplifies its near-field producing the local filed enhancement effect. We investigate the details of the coupling mechanism and identify the dominant role of the tip mode in determining the coupling efficiency numerically. The numerical model results in good agreement with recent experimental results. This intra-particle coupling mechanism will help the monolithic integration of plasmonic functionalities and its application for the nanoscale spectroscopy of biological structures in vivo.

© 2005 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

Original Manuscript: August 10, 2005
Revised Manuscript: September 9, 2005
Published: October 17, 2005

Jaeyoun Kim, Gang Liu, Yu Lu, and Luke Lee, "Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities," Opt. Express 13, 8332-8338 (2005)

Sort:  Journal  |  Reset  


  1. L. Zhao, K. L. Kelly, and G. C. Schatz, �??The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,�?? J. Phys. Chem. B 107, 7343-7350 (2003). [CrossRef]
  2. N. Calander and M. Willander, �??Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids,�?? J. Appl. Phys. 92, 4878-4884 (2002). [CrossRef]
  3. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, �??A hybridization model for the plasmon response of complex nanostructures,�?? Science 302, 419-422 (2003). [CrossRef] [PubMed]
  4. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, �??Optical properties of gold nanorings,�?? Phys. Rev. Lett. 90, 057401 (2003). [CrossRef] [PubMed]
  5. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, �??Fabrication of crescent-shaped optical antenna,�?? Adv. Mat. 17, 2131-2134 (2005). [CrossRef]
  6. Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, and L. P. Lee, �??Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,�?? Nano Lett. 5, 119-124 (2005). [CrossRef] [PubMed]
  7. C. C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, �??Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,�?? J. Phys. Chem. B 107, 7327-7333 (2003). [CrossRef]
  8. E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, �??Optical properties of metal nanoshells,�?? J. Phys. Chem. B 108, 1224-1229 (2004). [CrossRef]
  9. S. Coyle, M. C. Netti, J. J. Baumberg, M. A.Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, �??Confined plasmons in metallic nanocavities,�?? Phys. Rev. Lett. 87, 176801 (2001). [CrossRef] [PubMed]
  10. C. I. Valencia and R. A. Depine, �??Resonant scattering of light by an open cylindrical cavity ruled on a highly conducting flat surface,�?? Opt. Comm. 159, 254-265 (1999); D. C. Skigin and R. A. Depine, �??Surface shape resonances and surface plasmon polariton excitations in bottle-shaped metallic gratings,�?? Phys. Rev. E 63, 046608 (2001). [CrossRef]
  11. P. B. Johnson and R. W. Christy, �??Optical constants of the noble metals,�?? Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  12. M. Kociak, O. Stephan, L. Henrad, V. Charbois, A. Rothschild, R. Tenne, and C. Colliex, �??Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles,�?? Phys. Rev. Lett. 87, 075501 (2001). [CrossRef] [PubMed]
  13. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, �??Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible,�?? Nano Lett. 4, 957-961 (2004); P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G. Kino, and W.E. Moerner, �??Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,�?? Phys. Rev. Lett. 94, 017402 (2005). [CrossRef]
  14. R. Ruppin, in Electromagnetic Surface Modes, edited by A. D. Boardman (Wiley, Chichester, 1982), Chap. 9, p.345.
  15. R.D. Grober, R.J. Schoelkopf, and D.E. Prober, �??Optical antenna: Towards a unity efficiency near-field optical probe,�?? Appl. Phys. Lett. 70, 1354-1356 (1997). [CrossRef]
  16. J. P. Kottmann and O. J. F. Martin, �??Retardation-induced plasmon resonances in coupled nanoparticles,�?? Opt. Lett. 26, 1096-1098 (2001). [CrossRef]
  17. T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, �??Surface Shape Resonances in Lamellar Metallic Gratings,�?? Phys. Rev. Lett. 81, 665-668 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited