OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8372–8379

Optical whirlpool on an absorbing metallic nanoparticle

M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev  »View Author Affiliations

Optics Express, Vol. 13, Issue 21, pp. 8372-8379 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The power-flow lines of light interacting with a metallic nanoparticle, in the proximity of its plasmon resonance, form whirlpool-like nanoscale optical vortices. These vortices were independently observed using analytical Mie theory and 3D finite element numerical modelling of the Maxwell equations. Two different types of vortex have been detected. The outward vortex first penetrates the particle near its centerline then, on exiting the particle, the flow-lines turn away from the centerline and enter a spiral trajectory. Outward vortices are seen for the wavelengths shorter then the plasmon resonance. For the wavelengths longer that the plasmon resonance the vortex is inward: the power-flow lines pass around the sides of the particle before turning towards the centerline and entering the particle to begin their spiral trajectory.

© 2005 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Research Papers

Original Manuscript: July 15, 2005
Revised Manuscript: September 21, 2005
Published: October 17, 2005

M. Bashevoy, V. Fedotov, and N. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express 13, 8372-8379 (2005)

Sort:  Journal  |  Reset  


  1. J. R. Krenn, �??Nanoparticle waveguides: watching energy transfer,�?? Nature Materials 2, 210�??211 (2003). [CrossRef] [PubMed]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, �??Electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit,�?? Phys. Rev. B 62, R16356 (2000). [CrossRef]
  3. S. A. Maier, P. G. Kik, and H. A. Atwater, �??Optical pulse propagation in metal nanoparticle chain waveguides,�?? Phys. Rev. B 67, 205402 (2003). [CrossRef]
  4. Special issue on singular optics, edited by M. V. Berry, M. Dennis, and M. Soskin, J. Opt. A 6 (2004).
  5. M. V. Berry, �??Exuberant interference: Rainbows, tides, edges, (de)coherence,�?? Phil. Trans. R. Soc. Lond. A 360, 1023�??1037 (2002). [CrossRef]
  6. H. F. Schouten, T. D. Visser, and D. Lenstra, �??Optical vortices near sub-wavelength structures,�?? J. Opt. B 6, (2004). [CrossRef]
  7. H. F. Schouten, T. D. Visser, and G. Gbur, �??Diffraction of light at slits in plates of different materials,�?? J. Opt. A 6, (2004). [CrossRef]
  8. G. Mie, �??Beitrage zur optik truber medien, speziell kolloida ler metallosungen,�?? Ann. Physik 25, 377 (1908). [CrossRef]
  9. H. C. van der Hulst, Light Scattering by Small Particles (Wiley, New York, 1983).
  10. J. V. Dave, �??Scattering of electromagnetic radiation by a large, absorbing sphere,�?? IBM J. Res. Dev. 13, 302 (1969). [CrossRef]
  11. C. Sonnichsen, T. Franzl, and T. Wilk, �??Plasmon resonances in large noble-metal clusters,�?? New. J. Phys. 4, 93.1�??93.8 (2002). [CrossRef]
  12. J. R. Krenn, A. Dereux, and J. C.Weeber, �??Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,�?? Phys. Rev. Lett. 82, 2590�??2593 (1999). [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  14. H. Kuwata, H. Tamaru, K. Esumi, et. al., �??Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,�?? Appl. Phys. Lett. 83, 4625 (2003). [CrossRef]
  15. Handbook of Chemistry and Physics, edited by R. Lide (CRC Press, New York, 2000).
  16. J. L. Volakis, A. Chatterjee and L. C. Kempel, �??Review of the finite element method for three-dimensional electromagnetic scattering,�?? J. Opt. Soc. Am. A 11, 1422 (1994). [CrossRef]
  17. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 2002).
  18. M. Dorobantu, �??Efficient streamline computations on unstructured grids�??, Department of Numerical Analysis and Computing Science, Royal Institute for Technology, Stockholm (1997).
  19. Z. B.Wang, B. S. Luk�??yanchuk, M. H. Hong, et. al., �??Energy flow around a small particle investigated by classical Mie theory,�?? Phys. Rev. B 70, 035418 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

Supplementary Material

» Media 1: AVI (2522 KB)     
» Media 2: AVI (10346 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited