OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8433–8441

Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps

V.A. Tolmachev, T.S. Perova, and R.A. Moore  »View Author Affiliations


Optics Express, Vol. 13, Issue 21, pp. 8433-8441 (2005)
http://dx.doi.org/10.1364/OPEX.13.008433


View Full Text Article

Enhanced HTML    Acrobat PDF (175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method of photonic band gap extension using mixing of periodic structures with two or more consecutively placed photonic crystals with different lattice constants is proposed. For the design of the structures with maximal photonic band gap extension the gap map imposition method is utilised. Optimal structures have been established and the gap map of photonic band gaps has been calculated at normal incidence of light for both small and large optical contrast and at oblique incidence of light for small optical contrast.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.0220) Optical design and fabrication : Optical design and fabrication
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Research Papers

History
Original Manuscript: August 19, 2005
Revised Manuscript: October 1, 2005
Published: October 17, 2005

Citation
V. Tolmachev, T. Perova, and R. Moore, "Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps," Opt. Express 13, 8433-8441 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8433


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Singapore, 1995).
  3. Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas,�??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  4. D.N. Chigrin, A.V. Lavrinenko, D.A. Yarotsky, S.V. Gaponenko, �??Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,�?? Appl.Phys. A 68, 25-28 (1999). [CrossRef]
  5. P.St.J. Russell, S. Tredwell, P.J. Roberts, �??Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,�?? Opt.Commun. 160, 66-71 (1999). [CrossRef]
  6. P. Yeh, A. Yariv, Optical waves in crystals (Wiley, USA, 1984, pp.589).
  7. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko,�??All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control,�?? J Lightwave Techn. 17, 2018-2024 (1999). [CrossRef]
  8. C. Jamois, R.B. Wehrspohn, L.C. Andreani, C. Hermannd, O. Hess, and U. Gosele, �??Silicon-based twodimensional photonic crystal waveguides,�?? Photonics and Nanostructures �?? Fundamentals and Applications 1, 1-13 (2003). [CrossRef]
  9. L.F. Marsal, T. Trifonov, A. Rodriguez, J. Pallares, and R. Alcubilla, �??Larger absolute photonic band gap in two-dimensional air�??silicon structures,�?? Physica E 16, 580-585 (2003). [CrossRef]
  10. V.A. Tolmachev, T.S. Perova, E.V. Astrova, J.A. Pilyugina and R.A. Moore, �??Optical characteristics of ordinary and tunable 1D Si photonic crystals in the mid infrared range,�?? Proc. SPIE 5825 (to be published).
  11. M. Born, and E. Wolf, Principles of Optics (sixth ed., Pergamon Press, 1980, p. 381); R.M.A. Azzam, and N.M. Bashara, Ellipsometry and polarized light (North-Holland, Amsterdam, Netherlands, 1977).
  12. V.A. Tolmachev, T.S. Perova and K. Berwick, �??Design criteria and optical characteristics of 1D photonic crystals based on periodically grooved silicon,�?? Appl. Opt. 42, 5679- 5683 (2003). [CrossRef] [PubMed]
  13. Optical Interference Coatings, eds.N. Kaiser, H.K.Pulker (Springer, Germany, 2003, pp.503).
  14. D. Zhang, W. Hu, Y. Zhang, Z. Li, B. Cheng, and G. Yang, �??Experimental verification of light localization for disordered multilayers in the visible-infrared spectrum,�?? Phys.Rev. B50, 9810-9814 (1994).
  15. D. Zhang, Z. Li, W. Hu and B. Cheng, �??Broadband optical reflector�??an application of light localization in one dimension,�?? Appl.Phys.Lett. 67, 2431-2432 (1995). [CrossRef]
  16. H. Li, H. Cheng and X. Qiu, �??Band-gap extension of disordered 1D binary photonic crystals,�?? Physica B 279, 164-167 (2000). [CrossRef]
  17. V.A. Tolmachev , T.S. Perova, J. Pilyugina, and R.A. Moore, �??Experimental verification of photonic band gap extension for disordered 1D photonic crystal based on Si�??, Opt.Commun. (to be published).
  18. W.H. Southwell, �??Omnidirectional mirror design with quarter-wave dielectric stacks,�?? Appl.Opt. 38, 5464-5467 (1999). [CrossRef]
  19. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zia, �??Enlagment of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,�?? Appl. Phys. Lett. 80, 4291-4293 (2002) [CrossRef]
  20. V.A. Tolmachev, T.S. Perova, and K. Berwick, �??Design of 1D composite photonic crystals with an extended photonic band gap,�?? J.App.Phys. (paper submitted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited