OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8514–8519

Planar glass devices for efficient periodic poling

Jacob Fage-Pedersen, Rune Jacobsen, and Martin Kristensen  »View Author Affiliations

Optics Express, Vol. 13, Issue 21, pp. 8514-8519 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase-matching wavelength and bandwidth, and a normalised conversion efficiency of 1.4 × 10-3 %/W/cm2 which, to our knowledge, is the highest obtained so far with periodic glass poling.

© 2005 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.4310) Integrated optics : Nonlinear
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(160.6030) Materials : Silica
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Research Papers

Original Manuscript: August 11, 2005
Revised Manuscript: September 12, 2005
Published: October 17, 2005

Jacob Fage-Pedersen, Rune Jacobsen, and Martin Kristensen, "Planar glass devices for efficient periodic poling," Opt. Express 13, 8514-8519 (2005)

Sort:  Journal  |  Reset  


  1. R. Myers, N. Mukherjee, and S. Brueck, �??Large second-order nonlinearity in poled fused silica,�?? Opt. Lett. 16, 1732�??4 (1991). [CrossRef] [PubMed]
  2. A. Kudlinski, G. Martinelli, and Y. Quiquempois, �??Time evolution of second-order nonlinear profiles induced within thermally poled silica samples,�?? Opt. Lett. 30, 1039�??1041 (2005). [CrossRef] [PubMed]
  3. D. Faccio, V. Pruneri, and P. Kazansky, �??Dynamics of the second-order nonlinearity in thermally poled silica glass,�?? Appl. Phys. Lett. 79, 2687�??9 (2001). [CrossRef]
  4. A. Ozcan, M. Digonnet, G. Kino, F. Ay, and A. Aydinli, �??Characterization of thermally poled germanosilicate thin films,�?? Opt. Express 12, 4698�??4708 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4698</a>. [CrossRef] [PubMed]
  5. J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, �??Glass Waveguides for Periodic Poling,�?? in Bragg Gratings, Poling, and Photosensitivity (BGPP), Sydney, Australia, July 2005, paper no. 69.
  6. V. Pruneri, G. Bonfrate, P. Kazansky, D. Richardson, N. Broderick, J. De Sandro, C. Simonneau, P. Vidakovic, and J. Levenson, �??Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,�?? Opt. Lett. 24, 208�??10 (1999). [CrossRef]
  7. H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, �??Creation of second-order nonlinearity and quasi-phase-matched second-harmonic generation in Ge-implanted fused silica planar waveguide,�?? Appl. Phys. Lett. 86, 81,107 (2005).
  8. R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, �??Phase-matched second-harmonic generation by periodic poling of fused silica,�?? Appl. Phys. Lett. 64, 1332�??1334 (1994). [CrossRef]
  9. H.-Y. Chen, J.-S. Sue, Y.-H. Lin, and S. Chao, �??Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica,�?? Opt. Lett. 28, 917�??919 (2003). [CrossRef] [PubMed]
  10. Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, �??Poling effect of a charge-trapping layer in glass waveguides,�?? Appl. Phys. B 78, 371�??375 (2004). [CrossRef]
  11. U. Krieger and W. Lanford, �??Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial sodalime glass I: Experimental,�?? J. Non-Cryst. Sol. 102, 50�??61 (1988). [CrossRef]
  12. T. G. Alley and R. A. Myers, �??Space charge dynamics in thermally poled fused silica,�?? J. Non-Cryst. Sol. 242, 165�??176 (1998). [CrossRef]
  13. M. Severi and M. Impronta, �??Charge trapping in thin nitrided SiO2 films,�?? Appl. Phys. Lett. 51, 1702�??4 (1987). [CrossRef]
  14. Y. Luo, A. Biswas, A. Frauenglass, and S. Brueck, �??Large second-harmonic signal in thermally0poled lead glass-silica waveguides,�?? Appl. Phys. Lett. 84, 4935�??4937 (2004). [CrossRef]
  15. J. Arentoft, M. Kristensen, K. Pedersen, S. Bozhevolnyi, and P. Shi, �??Poling of silica with silver-containing electrodes,�?? Electron. Lett. 36, 1635�??1636 (2000). [CrossRef]
  16. J. Fage-Pedersen, M. Kristensen, and J. Beerman, �??Poling of glass waveguides by a metal-induced Χ(3) enhancement,�?? in Lasers and Electro-Optics Europe (CLEO/Europe), Munich, Germany, June 2003, p. 213 (IEEE, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited