OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8642–8661

The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams

Selcuk Akturk, Xun Gu, Pablo Gabolde, and Rick Trebino  »View Author Affiliations

Optics Express, Vol. 13, Issue 21, pp. 8642-8661 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a rigorous, but mathematically relatively simple and elegant, theory of first-order spatio-temporal distortions, that is, couplings between spatial (or spatial-frequency) and temporal (or frequency) coordinates, of Gaussian pulses and beams. These distortions include pulse-front tilt, spatial dispersion, angular dispersion, and a less well-known distortion that has been called “time vs. angle.” We write pulses in four possible domains, xt, xω, kω, and kt; and we identify the first-order couplings (distortions) in each domain. In addition to the above four “amplitude” couplings, we identify four new spatio-temporal “phase” couplings: “wave-front rotation,” “wave-front-tilt dispersion,” “angular temporal chirp,” and “angular frequency chirp.” While there are eight such couplings in all, only two independent couplings exist and are fundamental in each domain, and we derive simple expressions for each distortion in terms of the others. In addition, because the dimensions and magnitudes of these distortions are unintuitive, we provide normalized, dimensionless definitions for them, which range from -1 to 1. Finally, we discuss the definitions of such quantities as pulse length, bandwidth, angular divergence, and spot size in the presence of spatio-temporal distortions. We show that two separate definitions are required in each case, specifically, “local” and “global” quantities, which can differ significantly in the presence of spatio-temporal distortions.

© 2005 Optical Society of America

OCIS Codes
(320.5550) Ultrafast optics : Pulses
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Research Papers

Original Manuscript: August 18, 2005
Revised Manuscript: October 10, 2005
Published: October 17, 2005

Selcuk Akturk, Xun Gu, Pablo Gabolde, and Rick Trebino, "The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams," Opt. Express 13, 8642-8661 (2005)

Sort:  Journal  |  Reset  


  1. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating," Opt. Express 11, 68-78 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-68">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-68</a> [CrossRef] [PubMed]
  2. X. Gu, S. Akturk, and R. Trebino, "Spatial chirp in ultrafast optics," Opt. Commun. 242, 599-604 (2004). [CrossRef]
  3. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE," Opt. Express 11, 491-501 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-491">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-491</a> [CrossRef] [PubMed]
  4. K. Varju, A. P. Kovacs, G. Kurdi, and K. Osvay, "High-precision measurement of angular dispersion in a CPA laser," Appl. Phys. B-Lasers and Optics B74[Suppl], 259-263 (2002). [CrossRef]
  5. K. Varju, A. P. Kovacs, and K. Osvay, "Angular dispersion of femtosecond pulses in a Gaussian beam," Opt. Lett. 27(22), 2034-2036 (2002). [CrossRef]
  6. O. E. Martinez, "Pulse distortions in tilted pulse schemes for ultrashort pulses," Opt. Commun. 59(3), 229-232 (1986). [CrossRef]
  7. C. Dorrer, E. M. Kosik, and I. A. Walmsley, "Spatio-temporal characterization of ultrashort optical pulses using two-dimensional shearing interferometry," Appl. Phys. B-Lasers and Optics 74 [suppl.], 209-219 (2002). [CrossRef]
  8. Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, "Femtosecond pulse front tilt caused by angular dispersion," Opt. Engineering 32(10), 2501-2503 (1993). [CrossRef]
  9. J. Hebling, "Derivation of pulse-front tilt casued by angular dispersion," Opt. Quantum Eng. 28, 1759-1763 (1996). [CrossRef]
  10. S. Akturk, X. Gu, E. Zeek, and R. Trebino, "Pulse-front tilt caused by spatial and temporal chirp," Opt. Express 12, 4399-4410 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4399">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4399</a> [CrossRef] [PubMed]
  11. O. E. Martinez, "Matrix formalism for pulse compressors," IEEE J. Quantum. Electron. 24, 2530-2536 (1988). [CrossRef]
  12. O. E. Martinez, "Matrix Formalism for Dispersive Laser Cavities," IEEE J. Quantum. Electron. 25, 296-300 (1989). [CrossRef]
  13. S. P. Dijaili, A. Dienes, and J. S. Smith, "ABCD Matrices for dispersive pulse propagation," IEEE J. Quantum. Electron. 26, 1158-1164 (1990). [CrossRef]
  14. M. A. Larotonda and A. A. Hnilo, "Short laser pulse parameters in a nonlinear medium: different approximations of the ray-pulse matrix," Opt. Commun. 183, 207-213 (2000). [CrossRef]
  15. Q. Lin and S. Wang, "Spatial-temporal coupling in a grating-pair pulse compression system analysed by matrix optics," Opt. Quantum Electron. 27, 785-798 (1995). [CrossRef]
  16. A. G. Kostenbauder, "Ray-Pulse Matrices: A Rational Treatment for Dispersive Optical Systems," IEEE J. Quantum. Electron. 26, 1148-1157 (1990). [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ Pr, 1999).
  18. A. E. Siegman, Lasers (Univ Science Books, 1986).
  19. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products (Academic Press, 1994).
  20. K. Osvay, A. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, "Angular Dispersion and Temporal Change of Femtosecond Pulses From Misaligned Pulse Compressors," IEEE JSTQE 10(1), 213-220 (2004).
  21. O. E. Martinez, "Grating and prism compressors in the case of finite beam size," J. Opt. Soc. Am. B 3, 929-934 (1986). [CrossRef]
  22. D. J. Kane and R. Trebino, "Characterization of Arbitrary Femtosecond Pulses Using Frequency Resolved Optical Gating," IEEE J. Quantum Electron. 29, 571-579 (1993). [CrossRef]
  23. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26(12), 932-934 (2001). [CrossRef]
  24. R. Trebino, Frequency-Resolved Optical Gating (Kluwer Academic Publishers, Boston, 2002). [CrossRef]
  25. P. Gabolde and R. Trebino, "Self-referenced measurement of the complete electric field of ultrashort pulses," Opt. Express 12, 4423-4429 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4423">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4423</a> [CrossRef]
  26. R. G. Lane and M. Tallon, "Wave-front reconstruction using a Shack-Hartmann sensor," Appl. Opt. 31, 6902-6908 (1992). [CrossRef] [PubMed]
  27. I. Z. Kozma, G. Almasi, and J. Hebling, "Geometrical optical modeling of femtosecond setups having angular dispersion," Appl. Phys. B-Lasers and Optics B 76, 257-261 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: AVI (2320 KB)     
» Media 2: AVI (2096 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited