OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8671–8677

Femtosecond Neodymium-doped microstructure fiber laser

Mathias Moenster, Peter Glas, Günter Steinmeyer, Rumen Iliew, Nikolay Lebedev, Reiner Wedell, and Mario Bretschneider  »View Author Affiliations

Optics Express, Vol. 13, Issue 21, pp. 8671-8677 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate femtosecond operation of a Nd-doped microstructure fiber laser. The fiber provides gain and anomalous dispersion at the lasing wavelength of 1.06 μm and enables the construction of short and simple cavity designs. The laser is passively mode-locked by the combined action of a saturable absorber mirror, fiber nonlinearity, and dispersion and produces transform limited sub-400-fs pulses with a pulse energy as high as 100 pJ.

© 2005 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Research Papers

Original Manuscript: September 20, 2005
Revised Manuscript: October 11, 2005
Published: October 17, 2005

Mathias Moenster, Peter Glas, Günter Steinmeyer, Rumen Iliew, Nikolay Lebedev, Reiner Wedell, and Mario Bretschneider, "Femtosecond Neodymium-doped microstructure fiber laser," Opt. Express 13, 8671-8677 (2005)

Sort:  Journal  |  Reset  


  1. B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, �??Short Cavity Erbium/Ytterbium Fiber Lasers Mode-Locked with a Saturable Bragg Reflector,�?? IEEE J. Sel. Top. Quantum Electron. 3, 1065-75 (1997). [CrossRef]
  2. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, �??Ultrashort-pulse fiber ring lasers,�?? Appl. Phys. B 65, 277-94 (1997). [CrossRef]
  3. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, �??Mode locking with cross-phase and self-phase modulation,�?? Opt. Lett. 16, 502-4 (1991). [CrossRef] [PubMed]
  4. M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, �??Self-starting diode-pumped femtosecond Nd fiber laser,�?? Opt. Lett. 18, 1532-4 (1993). [CrossRef] [PubMed]
  5. H. Lim, F. �?. Ilday, and F. W. Wise, �??Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,�?? Opt. Lett. 28, 660-662 (2003). [CrossRef] [PubMed]
  6. P. St. J. Russell, �??Photonic Crystal Fibers,�?? Science 299, 358-62 (2003). [CrossRef] [PubMed]
  7. L. P. Shen,W. P. Huang, and S. S. Jian, �??Design of Photonic Crystal Fibers for Dispersion-Related Applications,�?? J. Lightwave Technol. 21, 1644-51 (2003). [CrossRef]
  8. J. K. Ranka, R. S.Windeler, A. J. Stentz, �??Visible Continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-7 (2000). [CrossRef]
  9. H. Lim, F.�?.Ilday, and F.W.Wise, �??Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,�?? Opt. Express 11, 1497-2 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1497">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1497</a>.
  10. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, �??Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm,�?? Opt. Express 11, 265-9 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-265">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-265</a>. [CrossRef] [PubMed]
  11. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, �??Modelocked laser based on Ytterbium doped holey fibre,�?? Electron. Lett. 37, 560-1 (2001). [CrossRef]
  12. D. Mogilevtsev, T. A. Birks, P. St. J. Russell, �??Group-velocity dispersion in photonic crystal fibers,�?? Opt. Lett. 23, 1662-4 (1998). [CrossRef]
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, �??Semiconductor Saturable Absorber Mirrors (SESAM�??s) for Femtosecond to Nanosecond Pulse Generation in Solid-State-Lasers,�?? IEEE J. Sel. Top. Quantum Electron. 2, 435-53 (1996). [CrossRef]
  14. M. Haiml, R. Grange, and U. Keller, �??Optical characterization of semiconductor saturable absorbers,�?? Appl. Phys. B 79, 331-9 (2004). [CrossRef]
  15. M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, �??Mode-locked Nd-doped microstructure fiber laser,�?? Opt. Express 12, 4523-7 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4523">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4523</a>. [CrossRef] [PubMed]
  16. S. M. J. Kelly, �??Characteristic sideband instability of periodically amplified average soliton,�?? Electron. Lett. 28, 806-7 (1992). [CrossRef]
  17. T. R. Schibli, E. R. Thoen, F. X. Kärtner, E. P. Ippen, �??Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,�?? Appl. Phys. B 70, 41-9 (2000). [CrossRef]
  18. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, �??Q-switching stability limits of continous-wave passive mode locking,�?? J. Opt. Soc. Am. B 16, 46-56 (1999). [CrossRef]
  19. F. X. Kärtner and U. Keller, �??Stabilization of solitonlike pulses with a slow saturable absorber,�?? Opt. Lett. 20, 16-8 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited