OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8678–8685

High-precision steering of multiple holographic optical traps

Christian H. J. Schmitz, Joachim P. Spatz, and Jennifer E. Curtis  »View Author Affiliations


Optics Express, Vol. 13, Issue 21, pp. 8678-8685 (2005)
http://dx.doi.org/10.1364/OPEX.13.008678


View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Locating and steering entire ensembles of microscopic objects has become extremely practical with the emergence of holographic optical tweezers. Application of this technology to single molecule experiments requires great accuracy in the spatial positioning of optical traps. This paper calculates the theoretical position resolution of a single holographic beam, predicting that sub-nanometer resolution is easily achieved. Experimental corroboration of the spatial resolution’s inverse dependence on the hologram’s number of pixels and phase levels is presented. To at least a nanometer range position resolution, multiple optical tweezers created by complex superposition holograms also follow the theoretical predictions for a single beam.

© 2005 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Research Papers

History
Original Manuscript: June 17, 2005
Revised Manuscript: June 17, 2005
Published: October 17, 2005

Citation
Christian Schmitz, Joachim Spatz, and Jennifer Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8678


Sort:  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  3. K. C. Neuman and S. Block, “Optical Trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004). [CrossRef]
  4. T. Gustavson, A. Chikkatur, A. Leanhardt, A. Gorlitz, S. Gupta, D. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88, 020,401 (2001). [CrossRef]
  5. J. Guck, R. Ananthakrishnan, H.Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001). [CrossRef] [PubMed]
  6. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005). [CrossRef]
  7. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974–1977 (1998). [CrossRef]
  8. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computergenerated holograms,” Opt. Commun. 185, 77 (2000). [CrossRef]
  9. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instr. 72, 1810–1816 (2001). [CrossRef]
  10. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  11. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005). [CrossRef] [PubMed]
  12. R. L. Eriksen, P. Mogensen, and J. Gluckstad, “Multiple beam optical tweezers generated by the generalized phase contrast method,” Opt. Lett. 27, 267–269 (2002). [CrossRef]
  13. D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11, 158–166 (2003). [CrossRef] [PubMed]
  14. A. Jesacher, S. F¨urhapter, S. Bernet, and M.Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004). [CrossRef] [PubMed]
  15. G.Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 1–12 (2005). [CrossRef]
  16. M. Lang, C. L. Asbury, J. Shaevitz, and S. M. Block, “An Automated Two-Dimensional Optical Force Clamp for Single Molecule Studies,” Biophys. J. 83, 491501 (2002). [CrossRef]
  17. W. J. Hossack, E. Theofanidou, and J. Crain, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 11, 253–259 (2003). [CrossRef]
  18. G. J. Wuite, R. J. Davenport, A. Rappaport, and C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000). [CrossRef] [PubMed]
  19. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  20. G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004). [CrossRef]
  21. S.-H. Lee, and D. G. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13, 7458–7465 (2005). [CrossRef] [PubMed]
  22. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, “Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A 18, 205–215 (2001). [CrossRef]
  23. J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, “Symmetry dependence of holograms for optical trapping,” Opt. Lett. 30, 2086–2088 (2005). [CrossRef] [PubMed]
  24. Due to total internal reflection of rays at the glass coverslip / water interface, the real NA of the objective (1.45) is reduced to 1.33.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited