OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 22 — Oct. 31, 2005
  • pp: 8772–8780

Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz

Gong-Ru Lin and I-Hsiang Chiu  »View Author Affiliations

Optics Express, Vol. 13, Issue 22, pp. 8772-8780 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100–300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530–1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.

© 2005 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Research Papers

Original Manuscript: July 28, 2005
Revised Manuscript: October 16, 2005
Published: October 31, 2005

Gong-Ru Lin and I-Hsiang Chiu, "Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz," Opt. Express 13, 8772-8780 (2005)

Sort:  Journal  |  Reset  


  1. M. J. Guy, J. R. Taylor and K. Wakita, �??10 GHz 1.9ps actively modelocked fibre integrated ring laser at 1.3 µm,�?? Electron. Lett. 33, 1630 (1997). [CrossRef]
  2. D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43 (1994). [CrossRef]
  3. T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos, �??20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser,�?? Opt. Lett. 24, 1209 (1999). [CrossRef]
  4. J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504 (2002). [CrossRef]
  5. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10�?30 GHz pulse train generation from semiconductor amplifier fiber ring laser,�?? IEEE Photonics Technol. Lett. 12, 25 (2000). [CrossRef]
  6. K. Tamura, J. Jacobson, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080 (1993). [CrossRef] [PubMed]
  7. N. V. Pedersen, K. B. Jakobsen, and M. Vaa, �??Mode-locked 1.5µm semiconductor optical amplifier fiber ring,�?? J. Lightwave Technol. 14, 833 (1996). [CrossRef]
  8. M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580 (2000). [CrossRef]
  9. K. Vlahos, C. Bintjas, N. Pleros, and H. Avramopoulos, �??Ultrafast semiconductor-based fiber laser sources,�?? IEEE J. Sel. Top. Quantum Electro. 10, 147 (2004). [CrossRef]
  10. G.-Q. Xia, Z.-M. Wu, and G.-R. Lin, �??Rising and falling time of amplified picosecond optical pulses by semiconductor optical amplifiers,�?? Opt. Commun. 227, 165 (2003). [CrossRef]
  11. G.-R. Lin, Y.-S. Liao, and G.-Q. Xia, �??Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers,�?? Opt. Express 12, 2017 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2017">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2017</a> [CrossRef] [PubMed]
  12. G.-R. Lin, I.-H. Chiu, and M.-C. Wu, �??1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression,�?? Opt. Express 13, 1008 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1008">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1008</a> [CrossRef] [PubMed]
  13. D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE Photonics Technol. Lett. 11, 521 (1999). [CrossRef]
  14. H. F. Liu, Y. Ogawa, S. Oshiba, and T. Nonaka, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE J. Quantum Electron. 11, 1655 (1991). [CrossRef]
  15. K. A. Ahmed, K. C. Chan, and H. F. Liu, �??Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression techique,�?? IEEE J. Quantum Electron. 1, 592 (1995). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989).
  17. K. C. Chan, and H. F. Liu, �??Effect of third-order dispersion on soliton-effect pulse compression,�?? Opt. Lett. 19, 49 (1994). [CrossRef] [PubMed]
  18. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, �??Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,�?? Opt. Lett. 8, 289 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited