OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 22 — Oct. 31, 2005
  • pp: 8960–8968

Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors

L. Andrea Dunbar, Virginie Moreau, Rolando Ferrini, Romuald Houdré, Lorenzo Sirigu, Giacomo Scalari, Marcella Giovannini, Nicolas Hoyler, and Jérôme Faist  »View Author Affiliations

Optics Express, Vol. 13, Issue 22, pp. 8960-8968 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed, fabricated and characterised electrically injected quantum cascade lasers with photonic crystal reflectors emitting at terahertz frequencies (3.75 THz). These in-plane emitting structures display typical threshold current densities of 420 A/cm2 and output powers of up to 2 mW under pulsed excitation. The emission characteristics are shown to be robust, as with increasing current the emission remains singlemode with no drift in wavelength, this results from the narrow reflectivity band of the photonic crystal reflectors.

© 2005 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Research Papers

Original Manuscript: September 28, 2005
Revised Manuscript: October 17, 2005
Published: October 31, 2005

L. Andrea Dunbar, Virginie Moreau, Rolando Ferrini, Romuald Houdré, Lorenzo Sirigu, Giacomo Scalari, Marcella Giovannini, Nicolas Hoyler, and Jérôme Faist, "Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005)

Sort:  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, �??Quantum Cascade Laser,�?? Science 264, 553�??556 (1994). [CrossRef] [PubMed]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior �??Continuous Wave Operation of Mid-Infrared Semiconductor Laser at Room Temperature,�?? Science 295, 301�??305 (2002). [CrossRef] [PubMed]
  3. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486�??2489 (1987). [CrossRef] [PubMed]
  4. E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-state Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059�??2062 (1987). [CrossRef] [PubMed]
  5. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll Photonic Crystals: Advances in Design, Fabrication and Characterization (Wiley-VCH, Weinheim, 2004).
  6. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso �??Quantum Cascade Surface-Emitting Photonic Crystal Laser,�?? Science 302, 1374�??1377 (2003 [CrossRef] [PubMed]
  7. M. Rochat, D. Hofstetter, M. Beck, and J. Faist �??Long-wavelength ( λ�?? 16 µm), room-temperature, single- frequency quantum-cascade lasers based on a bound-to-continuum transition,�?? Appl. Phys. Lett. 79, 4273�??4271 (2001). [CrossRef]
  8. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Lotti, and F. Rossi �??Terahertz semiconductor-heterostructure laser,�?? Nature 417, 156�??159 (2002). [CrossRef] [PubMed]
  9. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno �??Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,�?? Opt. Express 13, 3331�??3339 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3331">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3331</a> [CrossRef] [PubMed]
  10. R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré �??Optical Study of Two-Dimensional InP-Based Photonic Crystals by Internal Light Source Technique,�?? IEEE J. Quantum Electron. 38, 786�??799 (2002). [CrossRef]
  11. E. Kuramochi, M. Notomi, S. Hughes, L. Ramunno, G. Kira, S. Mitsugi, A. Shinya, and T.Watanabe �??Scattering Loss of Photonic Crystal Waveguides and Nanocavities induced by Structural Disorder,�?? CLEO Pacific Rim Tokyo Japan CTuE1-1 (2005).
  12. P. H. Siegel �??Terahertz Technology�?? IEEE Trans. Microwave Theory Tech. 50, 910�??928 (2002). [CrossRef]
  13. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho �??Distributed feedback quantum cascade lasers,�?? Appl. Phys. Lett. 70, 2670�??2672 (1997). [CrossRef]
  14. L. Mahler, R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies �??Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,�?? Appl. Phys. Lett. 84, 5446�??5448 (2004). [CrossRef]
  15. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle �??Surface-.emitting 10.1 µm quantum-cascade distributed feedback lasers,�?? Appl. Phys. Lett. 75, 3769�??3771 (1999). [CrossRef]
  16. M. Plihal and A. A. Maradudin �??Photonic band structure of two-dimensional systems: The triangular lattice,�?? Phys. Rev. B 44, 8565�??8571 (1991). [CrossRef]
  17. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho �??Long-wavelength (λ�?? 8 -11.5 µm) semiconductor lasers with waveguides based on surface plasmons,�?? Opt. Lett. 23, 1366�??1368 (1998). [CrossRef]
  18. G. Scalari, N. Hoyler, M. Giovannini, and J. Faist �??Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction�?? Appl. Phys. Lett. 86, 181101-3 (2005). [CrossRef]
  19. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R.E. Slusher, J. D. Joannopoulos, and O. Nalamasu �??Laser Action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9 (1999). [CrossRef]
  20. R. Ferrini, R. Houdré, H. Benisty, M. Qui, and J. Moosburger �??Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant,�?? J. Opt. Soc. Am. B 20, 469�??478 (2003). [CrossRef]
  21. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Light (Princeton University Press, New Jersey, 1995).
  22. Note that the point appears to be located at the �?M point in Fig. 1(a) and (b) due to a peculiarity of band folding in the reduced brillouin zone scheme where �?M fold onto �?M, but �?K, folds on to �?K, �?M,�?K
  23. The spacing between the modes can be seen clearly on the spectra taken at 0.8 A (blue line Fig. 5(b)). The optical path calculated from the sub-threshold Fabry-Perot fringes using an n gr = 3.9 is 1.3 mm that suggests that the highest reflectivity is at the cleaved facets.
  24. S. Mahnkopf, R. Marz, M. Kamp, G.-H. Duan, F. Lelarge and A. Forchel �??Tunable Photonic Crystal Coupled Cavity Lasers,�?? IEEE J. Quantum Electron. 40, 1306�??1314 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited