OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 22 — Oct. 31, 2005
  • pp: 9029–9038

Frequency-comb infrared spectrometer for rapid, remote chemical sensing

Albert Schliesser, Markus Brehm, Fritz Keilmann, and Daniel W. van der Weide  »View Author Affiliations


Optics Express, Vol. 13, Issue 22, pp. 9029-9038 (2005)
http://dx.doi.org/10.1364/OPEX.13.009029


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate real-time recording of chemical vapor fluctuations from 22m away with a fast Fourier-transform infrared (FTIR) spectrometer that uses a laser-like infrared probing beam generated from two 10-fs Ti:sapphire lasers. The FTIR’s broad 9–12μm spectrum in the “molecular fingerprint” region is dispersed by fast heterodyne self-scanning, enabling spectra at 2cm-1 resolution to be recorded in 70μs snapshots. We achieve continuous acquisition at a rate of 950 IR spectra per second by actively manipulating the repetition rate of one laser. Potential applications include video-rate chemical imaging and transient spectroscopy of e.g. gas plumes, flames and plasmas, and generally non-repetitive phenomena such as those found in protein folding dynamics and pulsed magnetic fields research.

© 2005 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.4050) Lasers and laser optics : Mode-locked lasers
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Research Papers

History
Original Manuscript: September 6, 2005
Revised Manuscript: October 21, 2005
Published: October 31, 2005

Citation
Albert Schliesser, Markus Brehm, Fritz Keilmann, and Daniel van der Weide, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-22-9029


Sort:  Journal  |  Reset  

References

  1. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).
  2. R. A. Palmer, J. L. Chao, R. M. Dittmar, V. G. Gregoriou, S. E. Plunkett, “Investigation of time-dependent phenomena by use of step-scan FT-IR,” Appl. Spectrosc. 47, 1297–1310 (1993) [CrossRef]
  3. B. A. Weinstock, H. Yang, and P. R. Griffiths, “Determination of the adsorption rates of aldehydes on bare and aminopropylsilyl-modified silica gels by polynomial fitting of ultra-rapid FT-IR data,” Vib. Spectrosc. 35, 145– 152 (2004). [CrossRef]
  4. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequeny-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004). [CrossRef] [PubMed]
  5. I. T. Sorokina and K. L. Vodopyanov (Eds.), Solid-State Mid-Infrared Laser Sources (Springer, Berlin, 2003). [CrossRef]
  6. D. W. van der Weide and F. Keilmann, “Coherent periodically pulsed radiation spectrometer,” US Patent 5,748,309 (1998).
  7. D. W. van der Weide, J. Murakowski and F. Keilmann, “Gas-absorption spectroscopy with electronic Terahertz techniques,” IEEE Trans. Microwave Theory Tech. 48, 740–743 (2000). [CrossRef]
  8. Th. Udem, R. Holzwarth, and T. W. H¨ansch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002). [CrossRef] [PubMed]
  9. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342, (2003). [CrossRef]
  10. M. Zimmermann, Ch. Gohle, R. Holzwarth, Th. Udem and T. W. Hänsch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29, 310–312 (2004). [CrossRef] [PubMed]
  11. R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, “Femtosecond infrared pulses tunable from 9 to 18 µm at an 88-MHz repetition rate,” Opt. Lett. 23, 861–863 (1998). [CrossRef]
  12. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000). [CrossRef]
  13. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: Experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999) [CrossRef]
  14. Strictly speaking, each beat-frequency amplitude Un is proportional to EnE_n, the product of two IR amplitudes at slightly offset frequencies, a negligible effect for the purpose of this study.
  15. D. Mittleman (Ed.), Sensing with THz radiation (Springer, Berlin, 2003).
  16. G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A New Method for Rapid Temporal Scanning of Ultrafast Lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 605–621 (1996) [CrossRef]
  17. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London A 362, 787–805 (2004). [CrossRef]
  18. Th. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85, 5064–5066 (2004). [CrossRef]
  19. D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature (London) 351, 81–82 (1991). [CrossRef] [PubMed]
  20. M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst 129, 880–885 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited