OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 22 — Oct. 31, 2005
  • pp: 9045–9051

Low threshold current density and high characteristic temperature narrow-stripe native oxide-confined 1.3-μm InGaAsN triple quantum well lasers

C.Y. Liu, S.F. Yoon, W.J. Fan, J.W. Ronnie Teo, and S. Yuan  »View Author Affiliations

Optics Express, Vol. 13, Issue 22, pp. 9045-9051 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



InGaAsN triple-quantum-well (TQW) 4-μm ridge waveguide (RWG) lasers were fabricated using pulsed anodic oxidation. High output power of 290 mW (both facets), low transparency current density of 389 A/cm2 (equivalent to 130 A/cm2/well) and high characteristic temperature (T0 ) of 157.2 K were obtained from the InGaAsN TQW RWG lasers. InGaAsN single-quantum-well (SQW) 4-μm RWG lasers were also fabricated for comparison. Extremely low threshold current (Ith ) of 15.7 mA was obtained from InGaAsN SQW RWG laser (4 × 500 μm2). However, InGaAsN SQW laser showed strong temperature dependence of Ith and presented much lower T0 than that of InGaAsN TQW lasers. Ridge height effects on the T0 of RWG lasers were also demonstrated.

© 2005 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.6000) Materials : Semiconductor materials

ToC Category:
Research Papers

Original Manuscript: August 29, 2005
Revised Manuscript: October 11, 2005
Published: October 31, 2005

C. Liu, S. Yoon, W. Fan, J. W. Teo, and S. Yuan, "Low threshold current density and high characteristic temperature narrow-stripe native oxide-confined 1.3-μm InGaAsN triple quantum well lasers," Opt. Express 13, 9045-9051 (2005)

Sort:  Journal  |  Reset  


  1. R. Fehse, S. Tomic, A.R. Adams, S.J. Sweeney, E.P. O�??Reilly, A. Andreev, and H. Riechert, �??A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,�?? IEEE J. Sel .Top. Quantum Electron. 8, 801-810 (2002). [CrossRef]
  2. W. Ha, V. Gambin, M. Wistey, S. Bank, S. Kim, and J. S. Harris Jr., �??Multiple quantum well GaInNAs-GaNA�??s ridge-waveguide laser diodes operating out to 1.4 μm,�?? IEEE Photon. Technol. Lett. 14, 591-593 (2002). [CrossRef]
  3. A.R. Kovsh, J.S. Wang, R.S. Hsiao, L.P. Chen, D.A. Livshits, G. Lin, V.M. Ustinov, and J.Y. Chi, �??High-power (200mW) singlemode operation of InGaAsN/GaAs ridge waveguide lasers with wavelength around 1.3 μm,�?? Electron. Lett. 39, 1276-1277 (2003). [CrossRef]
  4. N. Tansu, J-Y. Yeh, and L. J. Mawst, �??High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,�?? IEEE J. Sel .Top. Quantum Electron. 9, 1220-1227 (2003). [CrossRef]
  5. N. Tansu, J. Y. Yeh, and L. J. Mawst, �??Physics and Characteristics of 1200-nm InGaAs and 1300-1400 nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,�?? J. Phys. Condens. Matter, 16, S3277-S3318 (2004). [CrossRef]
  6. D. Gollub, S. Moses, and A. Forchel, �??Comparison of GaInNAs laser diodes based on two to five quantum wells,�?? IEEE J. Quantum Electron. 40, 337-342 (2004). [CrossRef]
  7. C.Y. Liu, S.F. Yoon, S.Z. Wang, W.J. Fan, Y. Qu, and S. Yuan, �??Fabrication of High-performance InGaAsN Ridge Waveguide Lasers with Pulsed Anodic Oxidation,�?? IEEE Photon. Technol. Lett. 16, 2409-2411 (2004). [CrossRef]
  8. C.Y. Liu, Y. Qu, S. Yuan, and S.F. Yoon, �??Optimization of ridge height for the fabrication of high performance InGaAsN ridge waveguide lasers with pulsed anodic oxidation,�?? Appl. Phys. Lett. 85, 4594-4596 (2004). [CrossRef]
  9. Y. Qu, C.Y. Liu, and S. Yuan, �??High-power 1.3-μm InGaAsN strain-compensated lasers fabricated with pulsed anodic oxidation,�?? Appl. Phys. Lett. 85, 5149-5151 (2004). [CrossRef]
  10. N. Tansu and L. J. Mawst, �??Current injection efficiency of InGaAsN quantum-well lasers,�?? J. Appl. Phys. 97, 054502 (2005). [CrossRef]
  11. S.M. Wang, Y.Q. Wei, X.D. Wang, Q.X. Zhao, M. Sadeghi, and A. Larsson, �??Very low threshold current density 1.3 μm GaInNAs single-quantum well lasers grown by molecular beam epitaxy,�?? J. Cryst. Growth 278, 734-738 (2005). [CrossRef]
  12. B. Dagens, A. Martinez, D. Make, O.L. Gouezigou, J.G. Provost, V. Sallet, K. Merghem, J.C. Harmand, A. Ramdane, and B. Thedrez, �??Floor free 10-Gb/s transmission with directly modulated GaInNAs-GaAs 1.35-μm laser for metropolitan applications,�?? IEEE Photon. Technol. Lett. 17, 971-973 (2005). [CrossRef]
  13. M. Yamada, T. Anan, H. Hatakeyama, K. Tokutome, N. Suzuki, T. Nakamura, and K. Nishi, �??Lowthreshold operation of 1.34-μm GaInNAs VCSEL grown by MOVPE,�?? IEEE Photon. Technol. Lett. 17, 950-952 (2005). [CrossRef]
  14. H. Carrère, X. Marie, J. Barrau, and T. Amand, �??Comparison of the optical gain of InGaAsN quantum-well lasers with GaAs or GaAsP barriers,�?? Appl. Phys. Lett. 86, 071116 (2005). [CrossRef]
  15. C.Y. Liu, S.F. Yoon, W.J. Fan, Z.Z. Sun, and R.J.W. Tew, �??Ridge Width Effect on the Characteristic Temperature of GaInNAs Triple Quantum Well Ridge Waveguide Lasers�??, in Proceedings of IQEC/CLEO-PR 2005 (International Quantum Electronics Conference 2005 and the Pacific Rim Conference on Lasers and Electro-Optics 2005, Japan, 2005), CWAB3-P31.
  16. D.P. Bour, M. Kneissl, L.T. Romano, R.M. Donaldson, C.J. Dunnrowicz, N.M. Johnson, and G.A. Evans, �??Stripe-width dependence of threshold current for gain-guided AlGaInN laser diodes,�?? Appl. Phys. Lett. 74, 404-406 (1999). [CrossRef]
  17. S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited