OSA's Digital Library

Optics Express

Optics Express

  • Editor: Micha
  • Vol. 13, Iss. 23 — Nov. 14, 2005
  • pp: 9149–9154

Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials

Bo Hou, Gu Xu, Hon Kwan Wong, and Weijia Wen  »View Author Affiliations

Optics Express, Vol. 13, Issue 23, pp. 9149-9154 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bandgaps of a structure with electrorheological fluids sandwiched between planar metallic fractal electrodes are investigated in the microwave regime. Our results show that bandgaps are tunable as a result of the electrorheological effect induced by the external electric field applied directly to the structure. A finite-difference time-domain simulation reveals that the tunability of bandgaps is not related to the average dielectric constant but is caused by the field-induced structural change in the electrorheological fluids.

© 2005 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(260.5740) Physical optics : Resonance
(350.4010) Other areas of optics : Microwaves

ToC Category:
Research Papers

Original Manuscript: September 8, 2005
Revised Manuscript: October 24, 2005
Published: November 14, 2005

Bo Hou, Gu Xu, Hon Wong, and Weijia Wen, "Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials," Opt. Express 13, 9149-9154 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987). [CrossRef] [PubMed]
  3. C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, Dordrecht, 1996).
  4. C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dordrecht, 2001).
  5. K. Busch and S. John, �??Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967 (1999). [CrossRef]
  6. Y. Shimoda, M. Ozaki, and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? Appl. Phys. Lett. 79, 3627 (2001). [CrossRef]
  7. B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, �??Ferroelectric inverse opals with electrically tunable photonic band gap,�?? Appl. Phys. Lett. 83, 4704 (2003). [CrossRef]
  8. J. Zhou, C. Q. Sun, K. Pita, Y. L. Lam, Y. Zhou, S. L. Ng, C. H. Kam, L. T. Li, and Z. L. Gui, �??Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3,�?? Appl. Phys. Lett. 78, 661 (2001). [CrossRef]
  9. M. Golosovsky, Y. Saado, and D. Davidov, �??Self-assembly of floating magnetic particles into ordered structures: A promising route for the fabrication of tunable photonic band gap materials,�?? Appl. Phys. Lett. 75, 4168 (1999). [CrossRef]
  10. S. Kim and V. Gopalan, �??Strain-tunable photonic band gap crystals,�?? Appl. Phys. Lett. 78, 3015 (2001). [CrossRef]
  11. H. Ma, W. Wen, W. Y. Tam, and P. Sheng, �??Dielectric electrorheological fluids: theory and experiment,�?? Adv. Phys. 52, 343 (2003). [CrossRef]
  12. W. Wen, H. Ma, W. Y. Tam, and P. Sheng, �??Anisotropic dielectric properties of structured electrorheological fluids,�?? Appl. Phys. Lett. 73, 3070 (1998). [CrossRef]
  13. W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, �??Subwavelength photonic band gaps from planar fractals,�?? Phys. Rev. Lett. 89, 223901 (2002). [CrossRef] [PubMed]
  14. W. Wen, X. Huang, S. Yang, and P. Sheng, �??The giant electrorheological effect in suspensions of nanoparticles,�?? Nature Mater. 2, 727 (2003). [CrossRef]
  15. Simulations were performed using the software package CONCERTO 3.1 (Vector Fields Limited, England, 2003).
  16. L. Zhou, C. T. Chan, and P. Sheng, �??Theoretical studies on the transmission and reflection properties of metallic planar fractals,�?? J. Phys. D: Appl. Phys. 37, 368 (2004). [CrossRef]
  17. B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited