OSA's Digital Library

Optics Express

Optics Express

  • Editor: Micha
  • Vol. 13, Iss. 23 — Nov. 14, 2005
  • pp: 9352–9630

Light bullets and dynamic pattern formation in nonlinear dissipative systems

Philippe Grelu, Jose M. Soto-Crespo, and Nail Akhmediev  »View Author Affiliations

Optics Express, Vol. 13, Issue 23, pp. 9352-9630 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (3024 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the search for suitable new media for the propagation of (3+1) D optical light bullets, we show that nonlinear dissipation provides interesting possibilities. Using the complex cubic-quintic Ginzburg-Landau equation model with localized initial conditions, we are able to observe stable light bullet propagation or higher-order transverse pattern formation. The type of evolution depends on the model parameters.

© 2005 Optical Society of America

OCIS Codes
(000.0000) General : General
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Research Papers

Original Manuscript: September 12, 2005
Revised Manuscript: October 25, 2005
Published: November 14, 2005

Philippe Grelu, Jose Soto-Crespo, and Nail Akhmediev, "Light bullets and dynamic pattern formation in nonlinear dissipative systems," Opt. Express 13, 9352-9630 (2005)

Sort:  Journal  |  Reset  


  1. Y. Silberberg, �??Collapse of optical pulses,�?? Opt. Lett. 15, 1282 (1990). [CrossRef] [PubMed]
  2. See the review paper : B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, �??Spatiotemporal solitons,�?? J. Opt. B 7, R53 (2005). [CrossRef]
  3. D. Mihalache, D. Mazilu, L.-C. Crasovan , B. Malomed, F. Lederer, and L. Torner, �??Soliton clusters in three-dimensional media with competing cubic and quintic nonlinearities,�?? J. Opt. B 6, S333 (2004). [CrossRef]
  4. N. Akhmediev and J. M. Soto-Crespo, �??Generation of a train of 3D optical solitons in a self-focusing medium,�?? Phys. Rev. A 47, 1358 (1993). [CrossRef] [PubMed]
  5. Y.-F. Chen, K. Beckwitt, F. Wise, and B. A. Malomed, �??Criteria for the experimental observation of multidimensional optical solitons in saturable media,�?? Phys. Rev. E 70, 046610 (2004). [CrossRef]
  6. G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, �??Observation of self-trapping of an optical beam due to the photorefractive effect,�?? Phys. Rev. Lett. 71, 533 (1993). [CrossRef] [PubMed]
  7. H. Meng, G. Salamo, M.-F. Shih, and M. Segev, �??Coherent collisions of photorefractive solitons,�?? Opt. Lett. 22, 448 (1997). [CrossRef] [PubMed]
  8. D. Skryabin and W. Firth, �??Generation and stability of optical bullets in quadratic nonlinear media,�?? Optics Commun. 148, 79 (1998). [CrossRef]
  9. X. Liu, L. J. Qian, and F. W. Wise, �??Generation of optical spatiotemporal solitons,�?? Phys. Rev. Lett. 82, 4631 (1999). [CrossRef]
  10. See the review paper: L. Torner and A. Barthélémy, �??Quadratic solitons: recent developments,�?? IEEE J. Quantum Electron. 39, 22 (2003). [CrossRef]
  11. L. Jankovic, P. Aboussan, M. Affolter, and G. Stegeman, �??Quadratic soliton collisions,�?? Opt. Express 12, 5562 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5562.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5562</a> [CrossRef] [PubMed]
  12. A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, �??Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,�?? Phys. Rep. 370, 63 (2002). [CrossRef]
  13. See the Feature Section on Cavity Solitons in IEEE Journal of Quant. Electron. 39, N°2 (2003).
  14. N. N. Rosanov, �??Solitons in laser systems with absorption,�?? in �??Dissipative solitons,�?? N. Akhmediev and A. Ankiewicz eds., (Springer-Verlag, Berlin 2005).
  15. S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissono, T. Knödl, M. Miller, and R. Jäger, �??Cavity solitons as pixels in semiconductor microcavities,�?? Nature 419, 699 (2002). [CrossRef] [PubMed]
  16. N. Akhmediev and A. Ankiewicz, eds. �??Dissipative solitons,�?? (Springer-Verlag, Berlin 2005).
  17. E. Ultanir, G. Stegeman, Ch. Lange, and F. Lederer, �??Coherent, dissipative spatial soliton interactions in semiconductor optical amplifiers,�?? Opt. Lett. 29, 283 (2004). [CrossRef] [PubMed]
  18. L.-C. Crasovan, B. A. Malomed, and D. Mihalache, �??Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg-Landau equation,�?? Phys. Lett. A 289, 59 (2001). [CrossRef]
  19. N. N. Rosanov, �??Spatial Hysteresis and Optical Patterns,�?? (Springer, Berlin Heidelberg, 2002) section 6.6 and references therein).
  20. W. Firth and A. Scroggie, �??Optical bullet holes: robust controllable states of a nonlinear cavity,�?? Phys. Rev. Lett. 76, 1623 (1996). [CrossRef] [PubMed]
  21. M. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, �??Nonlinear unbalanced Bessel beams: stationary conical waves supported by nonlinear losses,�?? Phys. Rev. Lett. 93, 153902 (2004). [CrossRef] [PubMed]
  22. N. N. Akhmediev and A. Ankiewicz, �??Solitons: nonlinear pulses and beams,�?? (Chapman & Hall, London, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (301 KB)     
» Media 2: MOV (470 KB)     
» Media 3: MOV (356 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited