OSA's Digital Library

Optics Express

Optics Express

  • Editor: Micha
  • Vol. 13, Iss. 23 — Nov. 14, 2005
  • pp: 9409–9414

Measuring large numerical apertures by imaging the angular distribution of radiation of fluorescing molecules

Luru Dai, Ingo Gregor, Iris von der Hocht, Thomas Ruckstuhl, and Jörg Enderlein  »View Author Affiliations

Optics Express, Vol. 13, Issue 23, pp. 9409-9414 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Exact knowledge of the numerical aperture is crucial in many applications using high-aperture objectives such as confocal microscopy, optical trapping, or advanced sub-wavelength imaging methods. We propose and apply a precise and straightforward method for measuring this fundamental parameter of microscope objectives with numerical apertures above unity. Our method exploits the peculiarities of the fluorescence emission of molecules at a glass/air interface.

© 2005 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.1220) Imaging systems : Apertures
(170.1790) Medical optics and biotechnology : Confocal microscopy

ToC Category:
Research Papers

Original Manuscript: September 7, 2005
Revised Manuscript: October 31, 2005
Published: November 14, 2005

Luru Dai, Ingo Gregor, Iris von der Hocht, Thomas Ruckstuhl, and Jörg Enderlein, "Measuring large numerical apertures by imaging the angular distribution of radiation of fluorescing molecules," Opt. Express 13, 9409-9414 (2005)

Sort:  Journal  |  Reset  


  1. P. M. Goodwin, W. P. Ambrose, and R. A. Keller �??Single-molecule detection in liquids by laser-induced fluorescence,�?? Acc. Chem. Res. 29, 607-613 (1996). [CrossRef]
  2. J. Enderlein, and M. Böhmer �??Fluorescence spectroscopy of single molecules under ambient conditions: Methodology and technology,�?? Chem. Phys. Chem. 4, 792-808 (2003) [CrossRef]
  3. R. Rigler, and J. Widengren �??Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy,�?? Bioscience 3, 180-183 (1990).
  4. P. Schwille �??Fluorescene correlation spectroscopy and its potential for intracellular applications,�?? Cell Biochem. Biophys. 34, 383-408 (2001). [CrossRef]
  5. A. Ashkin �??Optical trapping and manipulation of neutral particles using lasers,�?? Proc. Nat. Acad. Sci. 94, 4853-4860 (1997). [CrossRef] [PubMed]
  6. K. C. Neuman, and S. M. Block "Optical trapping," Rev. Sci. Instrum. 75, 2787-809 (2004). [CrossRef]
  7. D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb "Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes," Appl. Opt. 34, 3576-3588 (1995). [CrossRef] [PubMed]
  8. D. W. Piston "Choosing objective lenses; The importance of numerical aperture and magnification," Biol. Bull. 195, 1-4 (1998). [CrossRef] [PubMed]
  9. S. W. Hell, and H. K. Stelzer �??Properties of a 4Pi confocal fluorescence microscope,�?? J. Opt. Soc. Am. A 9, 2159-2166 (1992). [CrossRef]
  10. T. A. Klar, and S. W. Hell �??Subdiffraction resolution in far-field fluorescence microscopy,�?? Opt. Lett. 24, 954-956 (1999). [CrossRef]
  11. A. Schönle, and S. W. Hell �??Calculation of vectorial three-dimensional transfer functions in large-angle focusing systems,�?? J. Opt. Soc. Am. A 19, 2121-2126 (2002). [CrossRef]
  12. Neto P. A. Maia, and H. M. Nussenzveig "Theory of optical tweezers," Europhys. Lett. 50, 702-708 (2000). [CrossRef]
  13. C. J. R. Sheppard, M., Kawata Y. Gu, and S. Kawata "Three-dimensional transfer functions for high-aperture systems," J. Opt. Soc. Am. A 11, 593-598 (1994). [CrossRef]
  14. M. Böhmer, and J. Enderlein �??Orientation imaging of single molecules by wide-field epi-fluorescence microscopy,�?? J. Opt. Soc. Am. B 20, 554-559 (2003). [CrossRef]
  15. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and B. Kaupp �??Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,�?? Chem. Phys. Chem. (2005) in press.
  16. M. Müller, and G. J. Brakenhoff �??Characterization of high-numerical-aperture lenses by spatial autocorrelation of the focal field,�?? Opt. Lett. 20, 2159-2162 (1995). [CrossRef] [PubMed]
  17. R. Juškaitis �??Characterizing high numerical aperture microscope objective lenses�?? in: Optical Imaging and Microscopy, Eds.: P. Török ad F.-J. Kao (Springer, 2003) pp. 21-43.
  18. W. Lehmann, and A. Wachtel �??Numerical apertures of light microscope objectives,�?? J. Microsc. 169, 89-90 (1993). [CrossRef]
  19. W. Lukosz �??Light emission by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles,�?? J. Opt. Soc. Am. 71, 744-754 (1981). [CrossRef]
  20. J. Enderlein, T. Ruckstuhl, and S. Seeger �??Highly efficient optical detection of surface-generated fluorescence,�?? Appl. Opt. 38, 724-732 (1999). [CrossRef]
  21. W. Schroeyers, R. Vallee, D. Patra, J. Hofkens, S. Habuchi, T. Vosch, M. Cotlet, K. Müllen, J. Enderlein, and F. C. De Schryver �??Fluorescence lifetimes and emission patterns probe the 3D orientation of the emitting chromophore in a multichromophoric system,�?? J. Am. Chem. Soc. 126, 14310-14311 (2004). [CrossRef] [PubMed]
  22. D. Patra, I. Gregor, and J. Enderlein �??Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,�?? J. Phys. Chem. A 108, 6836-6841 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited