OSA's Digital Library

Optics Express

Optics Express

  • Editor: Micha
  • Vol. 13, Iss. 23 — Nov. 14, 2005
  • pp: 9422–9430

Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles

Ming-Yaw Ng and Wei-Chih Liu  »View Author Affiliations

Optics Express, Vol. 13, Issue 23, pp. 9422-9430 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The super-resolution capability of the AgO x -type super-resolution near-field structure disk with silver nanoparticles was studied using finite-difference time-domain method at different incident light frequencies. The near fields exhibited strongly local field enhancement around silver nanoparticles in the AgO x layer due to localized surface plasmon. The subwavelength recording marks smaller than λ/10 were distinguishable since the metallic nanoparticles with high localized fields transferred evanescent waves to detectable signals in the far field. The far-field signals from random silver nanoparticles displayed similar behaviors as those from single nanoparticle and red-shifts of peak frequencies from particle-particle interaction.

© 2005 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.4590) Optical data storage : Optical disks
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Research Papers

Original Manuscript: September 13, 2005
Revised Manuscript: November 2, 2005
Published: November 14, 2005

Ming-Yaw Ng and Wei-Chih Liu, "Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles," Opt. Express 13, 9422-9430 (2005)

Sort:  Journal  |  Reset  


  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, �??Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,�?? IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002). [CrossRef]
  2. P. N. Prasad, �??Nanophotonics�?? (Wiley, Hoboken, NJ, 2004).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature, 391, 667-669 (1998). [CrossRef]
  4. V. M. Shalaev, ed., �??Optical Properties of Nanostructured Random Media�?? (Springer-Verlag, Berlin, 2002).
  5. Antoly V Zayats and Igor O Smolyaninov, �??Near-field photonic: surface plasmon polaritons and locallized surface plasmons,�?? J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003). [CrossRef]
  6. C. Bohren and D. Huffman, �??Absorption and Scattering of Light by Small Particles�?? (Wiley, New York, 1983).
  7. D. A. Schultz,�??Plasmon resonant particles for biological detection,�?? Curr. Opin. Biotechnol. 14, 13-22 (2003). [CrossRef] [PubMed]
  8. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, �??Plasmonics �?? A route to nanoscale optical devices,�?? Adv. Mater. 13, 1501-1505 (2001). [CrossRef]
  9. S. Hell and J.Wichmann, �??Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,�?? Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  10. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, �??Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,�?? Proc. Natl. Acad. Sci. 97, 8206-8210 (2000). [CrossRef] [PubMed]
  11. E. Betzig, J. Trautman and J. R. Wolfe, �??Near-field magneto-optics and high density data storage,�?? Appl. Phys. Lett. 61, 142-144 (1992). [CrossRef]
  12. B. D. Terris, H. J. Mamin, and D. Rugar, W. R. Studenmund, and G. S. Kino, �??Near-field optical data storage using a solid immersion lens,�?? Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  13. J. Tominaga, T. Nakano, and N. Atoda, �??An approach for recording and readout beyond the diffraction limit with an Sb thin film,�?? Appl. Phys. Lett. 73, 2078-2080 (1998). [CrossRef]
  14. H. Fuji, J. Tominaga, L. Men and T. Nakano, �??A near-field recording and readout technology using a metallic probe in an optical disk,�?? Jpn. J. Appl. Phys.39, 980-981 (2000). [CrossRef]
  15. T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, �??Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,�?? Appl. Phys. Lett. 81, 4697-4699 (2002). [CrossRef]
  16. L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, �??Investigation on super-resolution near-field blu-ray-type phase-change optical disk with Sb2Te3 mask layer,�?? Jpn. J. Appl. Phys.44, 3615-3619 (2005). [CrossRef]
  17. T. Shima, T. Nakano, J. Kim, and J.Tominaga, �??Super-RENS disk for blue laser system retrieving signals from polycarbonate substrate side,�?? Jpn. J. Appl. Phys.44, 3631-3633 (2005). [CrossRef]
  18. W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, �??Near-field images of the AgOx-type super-resolution near-field structure,�?? Appl. Phys. Lett. 78, 685-687 (2001). [CrossRef]
  19. T. Nakano, Y. Yamakawa, J. Tominaga, and N. Atoda, �??Near-field optical simulation of super-resolution near-field structure disks,�?? Jpn. J. Appl. Phys. 40, 1531-1535 (2001). [CrossRef]
  20. L. P. Shi, T. C. Chong, X. S. Miao, P. K. Tan, and J. M. Li, �??A new structure of super-resolution near-field phase-change optical disk with a Sb2Te3 mask layer,�?? Jpn. J. Appl. Phys. 40, 1649-1650 (2001). [CrossRef]
  21. L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, �??Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,�?? J, Appl. Phys. 91, 10209-10211 (2002). [CrossRef]
  22. W.-C. Liu and D. P. Tsai, �??Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure,�?? Jpn. J. Appl. Phys. 42, 1031-1032 (2003). [CrossRef]
  23. W.-C. Liu, M.-Y. Ng, and D. P. Tsai, �??Surface plasmon effects on the far-field signals of Agox-type super-resolution near-field structure,�?? Jpn. J. Appl. Phys. 43, 4713-4717 (2004). [CrossRef]
  24. W.-C. Liu, M.-Y. Ng, and D. P. Tsai, �??Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters,�?? Scanning, 26, I98-I101 (2004). [PubMed]
  25. T. C. Chu, W.-C. Liu, and D. P. Tsai, �??Enhanced resolution induced by random silver nanoparticles in near-field optical disks,�?? Opt. Commun. 246, 561-567 (2005). [CrossRef]
  26. E.Wolf and M. Nieto-Vesperinas, �??Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,�?? J. Opt. Soc. Am. A, 2, 886-890 (1985). [CrossRef]
  27. M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee and N. Atoda, �??High-speed optical near-field photolithography by super resolution near-field structure,�?? Jpn. J. Appl. Phys. 38, L1079-L1081 (1999). [CrossRef]
  28. J. Tominaga, C. Mihalcea, D. Buechel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, �??Local plasmon photonic transistor,�?? Appl. Phys. Lett. 78, 2417-2419 (2001). [CrossRef]
  29. A. Taflove, �??Computational Electrodynamics�?? (Artech House. Boston-London, 1995).
  30. Edward D. Palik ed., �??Handbook of Optical Constants of Solids�?? (Academic, Orlando, Fla., 1985).
  31. J.B. Judkins, R. W. Ziolkowski, �??Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,�?? J. Opt. Soc. Am. A 12, 1974-1983 (1995). [CrossRef]
  32. K.-P. Charle, L. Konig, S. Nepijko, I. Rabin, and W. Schulze, �??The surface plasmon resonance in free and embedded Ag-cluster in the size range 1.5 nm < D < 30 nm,�?? Cryst. Res. Technol. 33, 1085-1096 (1998). [CrossRef]
  33. S. D. Gedney, �??The perfectly matched layer absorbing medium,�?? in �??Advances in Computational Electrodynamics�??, A. Taflove ed. (Artech House, Boston, MA, 1998).
  34. J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, �??Ferroelectric catastrophe: beyond nanometre-scale optical resolution,�?? Nanotechnology 15, 411-415 (2004). [CrossRef]
  35. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, �??Understanding the phase-change mechanism of rewritable optical media,�?? Nat. Mater. 3, 703-708 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (980 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited