OSA's Digital Library

Optics Express

Optics Express

  • Editor: Micha
  • Vol. 13, Iss. 23 — Nov. 14, 2005
  • pp: 9502–9515

Optimization of ultrafast all-optical resonator switching

Stephan Gulde, Asma Jebali, and Nikolaj Moll  »View Author Affiliations


Optics Express, Vol. 13, Issue 23, pp. 9502-9515 (2005)
http://dx.doi.org/10.1364/OPEX.13.009502


View Full Text Article

Enhanced HTML    Acrobat PDF (223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present general optimization arguments for resonator-based all-optical switching. Several generic resonator geometries, namely Fabry-Perot resonators, circular gratings as well as micro-ring resonators, are discussed and their particular features highlighted. We establish analytical models which allow a direct comparison of the different all-optical switch geometries. For the parameter range investigated, we find a clear advantage of photonic band-gap resonators (based on Bragg-type reflection) over micro-ring resonators (based on total internal reflection).

© 2005 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.1150) Optical devices : All-optical devices
(230.5750) Optical devices : Resonators
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Research Papers

History
Original Manuscript: September 15, 2005
Revised Manuscript: October 31, 2005
Published: November 14, 2005

Citation
Stephan Gulde, Asma Jebali, and Nikolaj Moll, "Optimization of ultrafast all-optical resonator switching," Opt. Express 13, 9502-9515 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9502


Sort:  Journal  |  Reset  

References

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, New York, 2002).
  2. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003).
  3. G. I. Stegeman and A. Miller, �??Physics of all-optical switching devices,�?? in Photonics in Switching, Vol. 1, J. E. Midwinter, ed. (Academic Press, San Diego, 1993).
  4. U. Peschel, T. Peschel, and F. Lederer, �??Optimization of bistable planar resonators operated near half the band gap,�?? IEEE J. Quantum Electronics 30, 1241-1249 (1994). [CrossRef]
  5. J. E. Heebner and R. W. Boyd, �??Enhanced all-optical switching by use of a nonlinear fiber ring resonator,�?? Opt. Lett. 24, 847-849 (1999). [CrossRef]
  6. G. Priem, I. Notebaert, P. Bienstman, G. Morthier, and R. Baets, �??Resonator-based all-optical Kerr-nonlinear phase shifting: Design and limitations,�?? J. Appl. Phys. 97, 023104-1 (2005) [CrossRef]
  7. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, �??All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,�?? Opt. Lett. 28, 2506-2508 (2003). [CrossRef] [PubMed]
  8. B. Luther-Davies and M. Samoc, �??Third-order nonlinear optical organic materials for photonic switching,�?? Curr. Opin. Solid State Mater. Sci. 2, 213-219 (1997). [CrossRef]
  9. D. Vujic and S. John, �??Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching,�?? Phys. Rev. A 72, 013807-1 (2005). [CrossRef]
  10. D. I. Babic and S.W. Corzine, �??Analytic Expressions for the Reflection Delay, Penetration Depth, and Absorptance of Quarter-Wave Dielectric Mirrors,�?? IEEE J. Quantum Electronics 28, 514-524 (1992). [CrossRef]
  11. The reflection phase Φ used in this paper is related to the reflection phase θ used in Ref. [10] by Φ = -θ.
  12. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997). [CrossRef]
  13. A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, W. Bächtold, �??Lasing in organic circular grating structures,�?? J. Appl. Phys. 96, 3043-3049 (2004). [CrossRef]
  14. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, �??InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties,�?? IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005). [CrossRef]
  15. G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, �??Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,�?? J. Appl. Phys. 98, 023105-1 (2005). [CrossRef]
  16. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, �??Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,�?? Appl. Phys. Lett. 86, 251101-1 (2005). [CrossRef]
  17. D. Ochoa, R. Houdre, M. Ilegems, H. Benisty, T. F. Krauss, and C. J. M. Smith, �??Diffraction of cylindrical Bragg reflectors surrounding an in-plane semiconductor microcavity,�?? Phys. Rev. B 61, 4806-4812 (2000). [CrossRef]
  18. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  19. C. Manolatou and H. A. Haus, Passive Components for Dense Optical Integration (Kluwer Academic Publishers, Boston, 2002). [CrossRef]
  20. E. A. J. Marcatili, �??Bends in Optical Dielectric Guides,�?? The Bell System Technical Journal, September issue, 175 2103-2132 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited