OSA's Digital Library

Optics Express

Optics Express

  • Editor: Micha
  • Vol. 13, Iss. 23 — Nov. 14, 2005
  • pp: 9537–9542

Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy

Georgi I. Petrov, Vladislav V. Yakovlev, Alexei V. Sokolov, and Marlan O. Scully  »View Author Affiliations


Optics Express, Vol. 13, Issue 23, pp. 9537-9542 (2005)
http://dx.doi.org/10.1364/OPEX.13.009537


View Full Text Article

Enhanced HTML    Acrobat PDF (729 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy is used for detection of bacterial spores in aqueous solution. Polarization CARS spectroscopy is employed to suppress the non-resonant background. CARS spectrum recorded in the spectral region from 700 to 1900 cm-1 exhibits all the characteristic features of spontaneous Raman spectrum taken for a solid powder and resembles that one of the dipicolinic acid, which is considered to be the major component of bacterial spores, including anthrax.

© 2005 Optical Society of America

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(180.0180) Microscopy : Microscopy
(190.0190) Nonlinear optics : Nonlinear optics
(190.5890) Nonlinear optics : Scattering, stimulated
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Research Papers

History
Original Manuscript: October 3, 2005
Revised Manuscript: November 6, 2005
Published: November 14, 2005

Citation
Georgi Petrov, Vladislav Yakovlev, Alexei Sokolov, and Marlan Scully, "Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy," Opt. Express 13, 9537-9542 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9537


Sort:  Journal  |  Reset  

References

  1. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, �??FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores,�?? Proc. Nat, Acad. Sci. USA 99, 10994 (2002). [CrossRef]
  2. M. Mehendale, B. Bosacciii, E. Gatzigiannis, A. Dogariu, W. S. Warren, and M. O. Scully, �??Towards an anthrax detector using the femtosecond adaptive spectroscopic technique for coherent anti-Stokes Raman Spectrosopy: coherent anti-Stokes Raman spectroscopy signal from dipicolinic acid in bacterial spores,�?? J. Mod. Opt. 51, 2645 (2004). [CrossRef]
  3. W. Suen, T. G. Spiro, L. C. Sowers, and J. R. Fresco, �??Identification by UV resonance Raman spectroscopy of an imino tautomer of 5-hydroxy-2�?? deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2�??-deoxycytidine,�?? Proc. Nat, Acad. Sci. USA 96, 4500 (1999). [CrossRef]
  4. J. M. Chalmers, and P. R. Griffiths, eds., Handbook of Vibrational Spectroscopy, John Wiley & Sons, Inc. Chichester, 2002.
  5. R. K. Chang, and T. E. Furtak, eds., Surface Enhanced Raman Scattering, Plenum Press, New York, 1982. [CrossRef]
  6. R. P. Régnier and J. P. E. Taran, �??On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering", Appl. Phys. Lett. 23, 24 (1973). [CrossRef]
  7. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species. Abacus, Cambridge, MA, 1988.
  8. M. D. Duncan, J. Reintjes, and T. J. Manuccia, �??Scanning coherent anti-Stokes Raman microscope,�?? Opt. Lett. 7, 350-352 (1982). [CrossRef] [PubMed]
  9. A. Zumbusch, G. R. Holton, and X. S. Xie, �??Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,�?? Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  10. M. Hashimoto, and T. Araki, �??Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,�?? Opt. Lett. 25, 1768-1770 (2000). [CrossRef]
  11. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, �??Real-time visualization of intracellular hydrodynamics in single living cells,�?? Proc. Natl. Acad. Sci. 98, 1577-1582 (2001). [CrossRef] [PubMed]
  12. G. W. H. Wurpel, J. M. Schins, and M. Müller, �??Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,�?? Opt. Lett. 27, 1093-1095 (2002). [CrossRef]
  13. V. V. Yakovlev, �??Advanced instrumentation for non-linear Raman microscopy,�?? J. Raman Spectrosc. 34, 957-964 (2003). [CrossRef]
  14. D. L. Marks and S. A. Boppart, �??Nonlinear interferometric vibrational imaging,�?? Phys. Rev. Lett. 92,123905 (2004). [CrossRef] [PubMed]
  15. G. W. Gould and A. Hurst, eds., The Bacterial Spore. Academic Press, London, 1969.
  16. A. A. Kolomenskii, S. N. Jerebtsov, T. Opatrny, H. A. Schuessler, and M. O. Scully, �??Spontaneous Raman spectra of dipicolinic acid in microcrystalline form,�?? J. Mod. Opt. 50, 2369 (2003). [CrossRef]
  17. A. P. Esposito, C. E. Talley, T. Huser, C. W. Hollars, C. M. Schaldach, and S. M. Lane, �??Analysis of single bacterial spores by micro-Raman spectroscopy,�?? Appl. Spectrosc. 57, 868 (2003). [CrossRef] [PubMed]
  18. D. L. Popham and P. Setlow, �??Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding�?? J. Bacteriol. 178, 2079 (1996). [PubMed]
  19. U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, �??Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,�?? Appl. Spectrosc. 55, 955 (2001). [CrossRef]
  20. B. N. Toleutaev, T. Tahara, and H. Hamaguchi, �??Broad-band (1000 cm-1) multiplex CARS spectroscopy�??application to polarization-sensitive and time-resolved measurements,�?? Appl. Phys. B59, 369 (1994).
  21. V. H. Astinov and G. M. Georgiev, �??Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,�?? Appl. Phys. B63, 62 (1996).
  22. G. I. Petrov and V. V. Yakovlev, �??Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy,�?? Opt. Express 13, 1299 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1299</a> [CrossRef] [PubMed]
  23. J. L. Oudar, R. W. Smith, and Y. R. Shen, �??Polarization-sensitive coherent anti Stokes Raman spectroscopy,�?? Appl. Phys. Lett. 34, 758 (1979). [CrossRef]
  24. N. Dudovich, D. Oron, and Y. Silberberg, �??Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,�?? Nature 418, 512-514 (2002). [CrossRef] [PubMed]
  25. A. Weippert and W. Kiefer, �??CARS difference spectroscopy,�?? J. Raman Spectrosc. 23, 713 (1992). [CrossRef]
  26. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, �??Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology,�?? Biophys. J. 83, 502-509 (2002). [CrossRef] [PubMed]
  27. A. Volkmer, �??Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,�?? J. Phys. D. 38, R59 (2005). [CrossRef]
  28. C. L. Evans, E. O. Potma, and X. S. Xie, �??Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility �?(3) for vibrational microscopy,�?? Opt. Lett. 29, 2923 (2004). [CrossRef]
  29. L. Ujj, B. Volodin, A. Popp, J. K. Delaney, and G. A. Atkinson, �??Picosecond resonance coherent anti-Stokes-Raman spectroscopy of bacteriorhodopsin �?? spectra and quantitative third-order susceptibility analysis of the light adapted BR-570,�?? Chem. Phys. 182, 291 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited