OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9645–9651

Nonlinear dispersive three-dimensional finite-difference time-domain analysis for photonic-crystal lasers

Min-Kyo Seo, G. Hugh. Song, In-Kag Hwang, and Yong-Hee Lee  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9645-9651 (2005)
http://dx.doi.org/10.1364/OPEX.13.009645


View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The three-dimensional finite-difference time-domain method that can handle dispersive and dynamic nonlinear-gain media is proposed and realized. The effect of carrier diffusion is included through the laser rate equations. Through this three-dimensional nonlinear gain FDTD method, rich laser-dynamics behaviors, such as the lasing threshold, the relaxation oscillation, and the spatial hole burning, are directly observed from a hexapole mode.

© 2005 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.3990) Optical devices : Micro-optical devices
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Research Papers

History
Original Manuscript: September 1, 2005
Revised Manuscript: September 1, 2005
Published: November 28, 2005

Citation
Min-Kyo Seo, G. Song, In-Kag Hwang, and Yong-Hee Lee, "Nonlinear dispersive three-dimensional finite-difference time-domain analysis for photonic-crystal lasers," Opt. Express 13, 9645-9651 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9645


Sort:  Journal  |  Reset  

References

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999). [CrossRef] [PubMed]
  2. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032 (2001). [CrossRef]
  3. H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic bandgap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002). [CrossRef]
  4. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, chap. 5, 8, 11 (Artech House, Boston, Mass, 1995).
  5. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305, 1444 (2004). [CrossRef] [PubMed]
  6. K. Nozaki and T. Baba, “Carrier and photon analyses of photonic microlasers by two-dimensional rate equations,” J. Sel. Area. Commun. 23, 1411 (2005). [CrossRef]
  7. R. J. Luebbers and F. Hunsburger, “FDTD for n-th-order dispersive media,” IEEE Trans. Antennas Propagat. 40, 1297–1301 (1992) [CrossRef]
  8. J. Schuster and R. Luebbers, “An accurate FDTD algorithm for dispersive media using a piecewise constant recursive convolution technique,” IEEE Antennas and propagation Soc. Internat. Symp. Digest, 4, 2018 (1998).
  9. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, chap. 2 (A Wiley-Interscience Publication, 1995).
  10. W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor Laser Physics (Springer-Verlag, Berlin, Germany 1994), Sec. 10-4. [CrossRef]
  11. G. H. Song, S. Kim, and K. Hwang, “FDTD Simulation of Photonic-Crystal Lasers and Their Relaxation Oscillation,” J. Opt. Soc. Kor. 6, 87 (2002). [CrossRef]
  12. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” J. Sel. Top. Quantum Electron. 5, 673 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: GIF (134 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited