OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9652–9659

Subwavelength light bending by metal slit structures

Tae-Woo Lee and Stephen K. Gray  »View Author Affiliations

Optics Express, Vol. 13, Issue 24, pp. 9652-9659 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss how light can be efficiently bent by nanoscale-width slit waveguides in metals. The discussion is based on accurate numerical solutions of Maxwell’s equations. Our results, using a realistic model for silver at optical wavelengths, show that good right-angle bending transmission can be achieved for wavelengths λ > 600 nm. An approximate stop-band at lower wavelengths also occurs, which can be partly understood in terms of a dispersion curve analysis. The bending efficiency is shown to correlate with a focusing effect at the inner bend corner. Finally, we show that good bending transmission can even arise out of U-turn structures.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Research Papers

Original Manuscript: October 10, 2005
Revised Manuscript: October 10, 2005
Published: November 28, 2005

Tae-Woo Lee and Stephen Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652-9659 (2005)

Sort:  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003). [CrossRef]
  2. A. V. Zayats and I. I. Smolyaninov, "Near field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003). [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998). [CrossRef]
  4. W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005). [CrossRef] [PubMed]
  5. S.-H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes n thin metal films," Opt. Express 13, 3150-3165 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3150">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3150</a> [CrossRef] [PubMed]
  6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003). [CrossRef] [PubMed]
  7. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevlclus, B. Kasemo, and M. Kall, "Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography," Nano Letters 5, 1065-1070 (2005). [CrossRef] [PubMed]
  8. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  9. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848(1999). [CrossRef]
  10. S. Collin, F. Pardo, R. Teissier, and J. L. Pellouard, "Strong discontinuities in complex photonic band structure of transmission metallic gratings," Phys. Rev. B 63, 033107 (2001). [CrossRef]
  11. J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transmission properties of a single metallic slit: From the subwavelength regime to the geometric-optics limit," Phys. Rev. E 69, 026601 (2004). [CrossRef]
  12. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metal films," Opt. Express 12, 6106-6121 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6106">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6106</a> [CrossRef] [PubMed]
  13. D.-K. Qing and G. Chen, "Nanoscale optical waveguides with negative dielectric claddings," Phys. Rev. B 71, 153107 (2005). [CrossRef]
  14. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998). [CrossRef] [PubMed]
  15. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, Jr., "A study of high-index-contrast 90 degree waveguide bend structures," Opt. Express 8, 517-528 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517</a> [CrossRef] [PubMed]
  16. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  17. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6645">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6645</a> [CrossRef] [PubMed]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).
  19. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  20. S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain results for silver cylinders," Phys. Rev. B 68, 045415 (2003). [CrossRef]
  21. T. O. Körner and W. Fichtner, "Auxiliary differential equation: efficient implementation in the finite-difference time-domain method," Opt. Lett. 22, 1586 (1997). [CrossRef]
  22. N. Marcuvitz, Waveguide Handbook (Peter Peregrinus Ltd., London, 1986). First published in MIT Radiation Laboratory Series (McGraw-Hill, New York, 1951). [CrossRef]
  23. J. J. Campbell and W. R. Jones, "Symmetrically truncated right-angle corners in parallel plate and rectangular wavegudies," IEEE Trans. Microwave Theory and Tech., MTT-16, 517 (1968). [CrossRef]
  24. C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, New York, 1989).
  25. E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, "Effect of damping on surface plasmon dispersion," Phys. Rev. Lett. 31, 1127-1129 (1973). [CrossRef]
  26. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II, 1250-1251 (McGraw-Hill, New York, 1953)
  27. F. J. Gracia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength silit," Phys. Rev. Lett. 90, 213901 (2003). [CrossRef]
  28. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in onedimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett 85, 1098 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1584 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited