OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9660–9665

Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime

Guoqiang Cui and M. G. Raymer  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9660-9665 (2005)
http://dx.doi.org/10.1364/OPEX.13.009660


View Full Text Article

Enhanced HTML    Acrobat PDF (131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We calculate the integrated-pulse quantum efficiency of single-photon sources in the cavity quantum electrodynamics (QED) strong-coupling regime. An analytical expression for the quantum efficiency is obtained in the Weisskopf-Wigner approximation. Optimal conditions for a high quantum efficiency and a temporally localized photon emission rate are examined. We show the condition under which the earlier result of Law and Kimble [J. Mod. Opt. 44, 2067 (1997)] can be used as the first approximation to our result.

© 2005 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(030.1670) Coherence and statistical optics : Coherent optical effects
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Research Papers

History
Original Manuscript: October 3, 2005
Revised Manuscript: October 2, 2005
Published: November 28, 2005

Citation
Guoqiang Cui and M. Raymer, "Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Opt. Express 13, 9660-9665 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9660


Sort:  Journal  |  Reset  

References

  1. C. K. Law and H. J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067 (1997).
  2. J. F. Clauser, “Experimental distinction between the quantum and classical field-theoretical prediction for the photoelectric effect,” Phys. Rev. D 9, 853 (1974). [CrossRef]
  3. F. Diedrich and H. Walther, “Nonclassical radiation of single stored ion,” Phys. Rev. Lett. 58, 203 (1987). [CrossRef] [PubMed]
  4. T. Basche, W. E. Moerner, M. Orrit and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516 (1992). [CrossRef] [PubMed]
  5. C. Kurtsiefer, S. Mayer, P. Zarda and H. Weinfurter, “Stable solid-state source of single photons,” Phys.Rev. Lett. 85, 290 (2000). [CrossRef] [PubMed]
  6. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968 (2000). [CrossRef] [PubMed]
  7. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502 (2001). [CrossRef] [PubMed]
  8. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002). [CrossRef]
  9. C. H. Bennet, G. Brassard and A. Eckert, “Quantum cryptography,” Sci. Am. 267(4), 50 (1992).
  10. E. Knill, R. Laflamme and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46 (2001). [CrossRef] [PubMed]
  11. H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, P. R. Berman ed. (Academic Press, Boston, 1994), pp. 203-266.
  12. J. P. Relthmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004). [CrossRef]
  13. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004). [CrossRef] [PubMed]
  14. E. Peter, P. Senellart, D. Marthou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  15. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of dingle photons from one atom trapped in a cavity,” Science 303, 1992 (2004). [CrossRef] [PubMed]
  16. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002). [CrossRef] [PubMed]
  17. S. Y. Kilin and T. B. Karlovich, “Single-atom laser: coherent and nonclassical effects in the regime of a strong atom-field correlation,” J. Exp. & Theo. Phys. 95, 805 (2002). [CrossRef]
  18. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002). [CrossRef] [PubMed]
  19. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies (Abstract),” Phys. Rev. 69, 681 (1946).
  20. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  21. V. Weisskopf and E. Wigner, “Berechnung der naturlichen Linienbreite auf Grund der Diracschen Lichttheorie,” Z. Phys. 63, 54 (1930). [CrossRef]
  22. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge, New York, 1997).
  23. L. A. Lugiato, “Theory of optical bistability,” in Progress in Optics, XXI, E. Wolf ed. (Elsevier Science Publishers B. V., New York, 1984), pp. 69-216. [CrossRef]
  24. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002). [CrossRef]
  25. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129 (2005). [CrossRef]
  26. G. Brassard, N. Lutkenhaus, T. Mor and B. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited