OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9683–9694

Short-wavelength infrared tuneable filters on HgCdTe photoconductors

Martin T. K. Soh, T. Nguyen, K. K. M. B. D. Silva, R. J. Westerhout, J. Antoszewski, A. J. Keating, N. Savvides, C. A. Musca, J. M. Dell, and L. Faraone  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9683-9694 (2005)
http://dx.doi.org/10.1364/OPEX.13.009683


View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design, micro-fabrication, and electronic and optical performance of a tuneable short-wavelength infrared Fabry-Perot micro-resonator on a mercury cadmium telluride photoconductor is presented. The maximum processing temperature of 125 °C has negligible effect on the electronic and optical performance of photoconductor test structures. Maximum responsivity, effective carrier lifetime and detectivity are 60 × 103 VW-1, 2 × 10-5 s and 8 × 1010 cmHz1/2W-1, respectively. The maximum effective carrier lifetime and specific detectivity are in good agreement with the theoretical maxima. Uncooled device operation is possible since responsivity is observed not to improve with thermo-electric cooling. Spectral tuning of the micro-filters is demonstrated over the wavelength range 1.7 to 2.2 μm using drive voltages up to 8 V, with the full-width-half-maximum of the resonance approximately 100 nm. Membrane deflection can be up to 40% of the cavity width.

© 2005 Optical Society of America

OCIS Codes
(040.5150) Detectors : Photoconductivity
(110.3080) Imaging systems : Infrared imaging
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Research Papers

History
Original Manuscript: September 8, 2005
Revised Manuscript: September 7, 2005
Published: November 28, 2005

Citation
Martin Soh, T. Nguyen, K. K. Silva, R. Westerhout, J. Antoszewski, A. Keating, N. Savvides, C. Musca, J. Dell, and L. Faraone, "Short-wavelength infrared tuneable filters on HgCdTe photoconductors," Opt. Express 13, 9683-9694 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9683


Sort:  Journal  |  Reset  

References

  1. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003). [CrossRef]
  2. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, 2002).
  3. L. J. Kozlowski, G. M.Williams, G. J. Sullivan, C.W. Farley, R. J. Anderson, J. C. D. T. Cheung, W. E. Tennant, and R. E. DeWames, “LWIR 128×128 GaAs/AlGaAs multiple quantum well hybrid focal plane array,” IEEE Trans. Electron Devices 38, 1124–1130 (1991). [CrossRef]
  4. G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994). [CrossRef]
  5. R. A. Wood, C. J. Han, and P. W. Kruse, “Integrated uncooled infrared detector imaging arrays,” in Technical Digest. IEEE Solid-State Sensor and Actuator Workshop (Cat. No.92TH0403-X), pp. 132–135 (1992). [CrossRef]
  6. I. H. Choi and K. D. Wise, “A silicon-thermopile-based infrared sensing array for use in automated manufacturing,” IEEE Trans. Electron Devices 33, 72–79 (1986). [CrossRef]
  7. P. G. Datskos, P. I. Oden, T. Thundat, E. A.Wachter, R. J.Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996). [CrossRef]
  8. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication and performance,” J. Microelectromech. Syst. 11, 136–146 (2002). [CrossRef]
  9. C. A. Musca, “Photoconductive infrared detector technology based on epitaxially-grown mercury cadmium telluride heterostructures,” Ph.D. thesis, Department of Electrical and Electronic Engineering at The University of Western Australia (1997).
  10. M. T. Eismann, C. R. Schwartz, and J. N. C. amd R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 2819, pp. 91–101 (1996).
  11. R. W. Basedow, W. S. Aldrich, J. E. Colwell, and W. D. Kinder, “HYDICE system performance – an update,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 2821, pp. 76–84 (1996).
  12. C. Simi, E. Winter, M. Williams, and D. Driscoll, “Compact airborne spectral sensor,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 4381, pp. 129–136 (2001).
  13. J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. K. M. B. D. Silva, C. A. Musca, J. M. Dell, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, and J. E. Robinson, “A monolithically integrated HgCdTe photodetector and Micro-Electro-mechanical Systems-Based optical filter,” J. Electron. Mat. 34, 716–721 (2005). [CrossRef]
  14. M. T. K. Soh, N. Savvides, C. A. Musca, M. P. Martyniuk, and L. Faraone, “Local bonding environment of nitrogen-rich silicon nitride thin films,” J. Appl. Phys. 97, 093,714 (2005). [CrossRef]
  15. M. T. K. Soh, C. A. Musca, N. Savvides, J. M. Dell, and L. Faraone, “Evaluation of plasma deposited silicon nitride thin films for micro-systems-technology,” J. Microelectromech. Syst. 14, 971–977 (2005). [CrossRef]
  16. M. T. K. Soh, A. C. Fischer-Cripps, N. Savvides, C. A. Musca, and L. Faraone, “Nanoindentation of plasma-deposited nitrogen-rich silicon nitride thin films,” J. Appl. Phys. (submitted June 2005). [CrossRef]
  17. M. T. K. Soh, N. Savvides, P. J. Martin, and C. A. Musca, “On the bonding microstructure of amorphous silicon oxide thin films,” Thin Solid Films (submitted April 2005).
  18. R. M. Broudy and V. J. Mazurczyk, Semiconductors and Semimetals, vol. 18, chap. 5 (Academic Press (New York), 1981). [CrossRef]
  19. D. K. Arch, R. A. Wood, and D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985). [CrossRef]
  20. M. A. Kinch, S. R. Borrello, B. H. Breazeale, and A. Simmons, “Geometrical enhancement of HgCdTe photoconductive detectors,” Infrared Phys. 17, 137–145 (1977). [CrossRef]
  21. T. Ashley and C. T. Elliott, “Accumulation effects at contacts to n-type cadmium-mercury-telluride photoconductors,” Infrared Phys. 22, 367–376 (1982). [CrossRef]
  22. D. L. Smith, D. K. Arch, R. A. Wood, and M. W. Scott, “HgCdTe heterojunction contact photoconductor,” Appl. Phys. Lett. 45, 83–85 (1985). [CrossRef]
  23. J. F. Siliquini, C. A. Musca, B. D. Nener, and L. Faraone, “Temperature dependence of Hg0.68Cd0.32Te infrared photoconductor performance,” IEEE Trans. Electron Devices 42, 1441–1448 (1995). [CrossRef]
  24. P. Capper, Properties of Narrow Gap Cadmium-based Compounds, chap. A6.2, pp. 212–214 (INSPEC (London, U.K.), 1994).
  25. P. E. Petersen, Semiconductors and Semimetals, vol. 18, chap. 4 (Academic Press (New York), 1981). [CrossRef]
  26. R. L. Strong, J. D. Luttmer, D. D. Little, T. H. Teherani, and C. R. Helms, “Characterization of anodic sulfide films on Hg0.78Cd0.22Te,” J. Vac. Sci. Technol. A, Vac. Surf. Films 5, 3207–3210 (1987). [CrossRef]
  27. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: numerical data and graphical information (Springer, 1999). [CrossRef]
  28. F. L. Galeener, “Optical evidence for a network of cracklike voids in amorphous germanium,” Phys. Rev. Lett. 27, 1716–1719 (1971). [CrossRef]
  29. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic Press, Inc., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: GIF (321 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited