OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9714–9720

Suppression of nonlinear optical signals in finite interaction volumes of bulk materials

Stefano Cattaneo, Mikael Siltanen, Fu Xiang Wang, and Martti Kauranen  »View Author Affiliations

Optics Express, Vol. 13, Issue 24, pp. 9714-9720 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that nonlinear optical signals generated by non-phase-matched interactions are strongly suppressed when the interaction volume is finite and localized deep inside the bulk of a homogeneous material, as opposed to the case where the interaction volume extends across a boundary of the material. The suppression in the bulk originates from destructive interference between the signals generated in the two regions where the interaction is gradually turned on and off and depends on the ratio of the coherence length to the characteristic length of the interaction volume.

© 2005 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Research Papers

Original Manuscript: September 6, 2005
Revised Manuscript: September 2, 2005
Published: November 28, 2005

Stefano Cattaneo, Mikael Siltanen, Fu Xiang Wang, and Martti Kauranen, "Suppression of nonlinear optical signals in finite interaction volumes of bulk materials," Opt. Express 13, 9714-9720 (2005)

Sort:  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).
  2. P. Günter, ed., Nonlinear Optical Effects and Materials (Springer, Berlin, 2000).
  3. T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces,” in Nonlinear Surface Electromagnetic Phenomena, H.–E. Ponath and G. I. Stegeman, eds. (Elsevier, Amsterdam, 1991), pp. 353-416.
  4. J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138, A1599-A1606 (1965). [CrossRef]
  5. P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16, 792-794 (1966). [CrossRef]
  6. A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, “Second harmonic generation in an optically active liquid: Experimental observation of a fourth-order optical nonlinearity due to molecular chirality,” Phys. Rev. Lett. 70, 1085-1088 (1993). [CrossRef] [PubMed]
  7. P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85, 4253-4256 (2000). [CrossRef] [PubMed]
  8. M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: A novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474-4477 (2000). [CrossRef] [PubMed]
  9. M. A. Belkin, S. H. Han, X. Wei, and Y. R. Shen, “Sum-frequency generation in chiral liquids near electronic resonance,” Phys. Rev. Lett. 87, 113001 (2001). [CrossRef] [PubMed]
  10. G. Berkovic, Y. R. Shen, G. Marowsky, and R. Steinhoff, “Interference between second-harmonic generation from a substrate and from an adsorbate layer,” J. Opt. Soc. Am. B 6, 205-208 (1989). [CrossRef]
  11. S. Cattaneo and M. Kauranen, “Determination of second-order susceptibility components of thin films by two-beam second-harmonic generation,” Opt. Lett. 28, 1445-1447 (2003). [CrossRef] [PubMed]
  12. S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72, 033412 (2005). [CrossRef]
  13. S. Cattaneo, “Two-beam surface second-harmonic generation,” Ph.D. thesis, Tampere University of Technology, Tampere, Finland, 2004.
  14. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005). [CrossRef] [PubMed]
  15. L. Sun, P. Figliozzi, Y. Q. An, and M. C. Downer, “Nonresonant quadrupolar SHG in isotropic solids using two orthogonally polarized laser beams,” Opt. Lett., in press. [PubMed]
  16. J. E. Sipe, “New green-function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481-489 (1987). [CrossRef]
  17. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986). [CrossRef]
  18. J. E. Sipe, V. Mizrahi, and G. I. Stegeman, “Fundamental difficulty in the use of second-harmonic generation as a strictly surface probe,” Phys. Rev. B 35, 9091–9094 (1987). [CrossRef]
  19. P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B 38, 7985-7989 (1988). [CrossRef]
  20. Y. R. Shen, “Surface contribution versus bulk contribution in surface nonlinear optical spectroscopy,” Appl. Phys. B 68, 295-300 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited