OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9729–9746

Parametric analysis of 2D guided-wave photonic band gap structures

C. Ciminelli, F. Peluso, and M. N. Armenise  »View Author Affiliations

Optics Express, Vol. 13, Issue 24, pp. 9729-9746 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices.

© 2005 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: September 26, 2005
Revised Manuscript: September 26, 2005
Published: November 28, 2005

C. Ciminelli, F. Peluso, and M. Armenise, "Parametric analysis of 2D guided-wave photonic band gap structures," Opt. Express 13, 9729-9746 (2005)

Sort:  Journal  |  Reset  


  1. N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation posses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Commun. 23, 1315-1320 (2005). [CrossRef]
  2. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab,” J. Lightwave Technol. 22, 2787-2792 (2004). [CrossRef]
  3. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970-1975 (2001). [CrossRef]
  4. J. Smajic, C. Hafner, and D. Erni, “On the design of photonic crystal multiplexers,” Opt. Express 11, 566-571 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-566">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-566<a/>. [CrossRef] [PubMed]
  5. M. Loncar, T. Yoshie, Y. Qiu, P. Gogna, and A. Scherer, “Low-threshold photonic crystal laser,” Proc. SPIE 5000, 16-26 (2003). [CrossRef]
  6. M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. De La Rue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. and Quantum Electron. 34, 79-89 (2002). [CrossRef]
  7. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002). [CrossRef]
  8. K. Sakoda, “Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4, 481-489 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-12-481">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-12-481</a>. [CrossRef] [PubMed]
  9. A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Opt. Express 23, 5690-5696 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5690">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5690</a>. [CrossRef]
  10. T. Baba, and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE J. Quantum Electron. 38, 909-914 (2002). [CrossRef]
  11. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behaviuor in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005). [CrossRef]
  12. E. Cubukcu, K. Aydin, and E. Ozbay, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  13. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  14. C. Ciminelli, F. Peluso and M. N. Armenise, “Modeling and design of two-dimensional guided-wave photonic band-gap devices,” J. Lightwave Technol. 23, 886-901 (2005). [CrossRef]
  15. C. Ciminelli, F. Peluso, M. N. Armenise and R. M. De La Rue, “Variable oblique incidence for tunability in a 2D guided wave photonic band gap filter,” J. Lightwave Technol. (to be published).
  16. T. D. Happ, A. Markard, M. Kamp, J.-L. Genter, and A. Forchel, “InP-based short cavity with 2D photonic crystal mirror,” Electron. Lett. 37, 428-429 (2001). [CrossRef]
  17. C. Ciminelli, F. Peluso, and M. N. Armenise, “2D guided-wave photonic band gap single and multiple cavity filters” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components, 404–409.
  18. K. Sakoda, “Transmittance and Bragg reflectivity of two-dimensional photonic lattices,” Phys. Rev. B 52, 8992-9002 (1995). [CrossRef]
  19. D. Labilloy et al., “Diffraction efficiency and guided light control by two-dimensional photonic-bandgap lattices,” IEEE J. Quantum Electron. 35, 1045-1052 (1999). [CrossRef]
  20. W. Bogaerts, P. Bienstmann, D. Taillaert, R. Baets and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13, 565-567 (2001). [CrossRef]
  21. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).
  22. C. Ciminelli, H. M. H. Chong, F. Peluso, M. N. Armenise and R. M. De La Rue, “High Q guided-wave photonic crystal extended microcavity” in Proceedings of ECOC 2004, Post deadline paper Th 4.2.6, 26-27.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited