OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9774–9781

Design of donor-type line-defect waveguides three-dimensional photonic crystals

Shoichi Kawashima, Lye Hoe Lee, Makoto Okano, Masahiro Imada, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9774-9781 (2005)
http://dx.doi.org/10.1364/OPEX.13.009774


View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have theoretically investigated the characteristics of three-dimensional (3D) photonic crystal (PC) waveguides formed by the introduction of dielectric line defects. We show that the guided modes in 3D PC waveguides strongly depend on the volume, position and number of dielectric defects introduced. We have succeeded in designing a waveguide structure with a large single-mode bandwidth of 178 nm (range = 1,466 to 1,644 nm) for wavelengths used in optical communications. Our study indicates that there is great flexibility in the design of 3D PC waveguides and that a variety of desirable properties can be obtained by altering the configuration of the line defects appropriately.

© 2005 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

History
Original Manuscript: October 13, 2005
Revised Manuscript: October 13, 2005
Published: November 28, 2005

Citation
Shoichi Kawashima, Lye Lee, Makoto Okano, Masahiro Imada, and Susumu Noda, "Design of donor-type line-defect waveguides in three-dimensional photonic crystals," Opt. Express 13, 9774-9781 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9774


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604-606 (2000). [CrossRef] [PubMed]
  4. B-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-planehetero photonic crystals,” Science 300, 1537 (2003). [CrossRef] [PubMed]
  5. T. Matsumoto, and T. Baba, “Photonic crystal k-vector superprism,” J. Lightwave Technol. 22, 917-922 (2004). [CrossRef]
  6. D. Mori, and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101-1103 (2004). [CrossRef]
  7. H. Takano, B-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005). [CrossRef]
  8. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227-229 (2004). [CrossRef] [PubMed]
  9. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444-447 (2004). [CrossRef]
  10. G. Subramania, and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85, 5037-5039 (2004). [CrossRef]
  11. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  12. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001). [CrossRef]
  13. M. Okano, and S. Noda, “Analysis of multimode point-defect cavities in three-dimensional photonic crystals using group theory in frequency and time domains,” Phys. Rev. B 70, 125105 (2004). [CrossRef]
  14. E. Özbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phy. Rev. B 51, 13961-13965 (1995). [CrossRef]
  15. A. Chutinan, and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739-3741 (1999). [CrossRef]
  16. D. Roundy, and J. Joannopoulos, “Photonic crystal structure with square symmetry within each layer and a three-dimensional band gap,” Appl. Phys. Lett. 82, 3835-3837 (2003). [CrossRef]
  17. M. Bayindir, and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, R2247-R2250 (2000). [CrossRef]
  18. C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z-Y. Li, K-M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605-4607 (2004). [CrossRef]
  19. A. Chutinan, and S. Noda, “Design for waveguides in three-dimensional photonic crystals,” Jpn. J. Appl. Phys. 39, 2353-2356 (2000). [CrossRef]
  20. D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96, 7750-7752 (2004). [CrossRef]
  21. M. Bayindir, and E. Ozbay, “Dropping of electromagnetic waves through localized modes in three-dimensional photonic band gap structures,” Appl. Phys. Lett. 81, 4514-4516 (2002). [CrossRef]
  22. M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B 68, 235110 (2003). [CrossRef]
  23. Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003). [CrossRef]
  24. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  25. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413-416 (1994). [CrossRef]
  26. E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K-M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059-2061 (1994). [CrossRef]
  27. H. S. Sözüer, and J. P. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt. 41, 231-239 (1994). [CrossRef]
  28. K. M. Leung, and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646-2649 (1990). [CrossRef] [PubMed]
  29. Z. Zhang, and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett. 65, 2650-2653 (1990). [CrossRef] [PubMed]
  30. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Photonic band gaps and localization,” in Proceedings of the NATO Advanced Science Institutes Series, C. M. Soukoulis, ed. (Plenum, New York, 1993), pp. 235.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited