OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9841–9846

Translation of interference pattern by phase shift for diamond photonic crystals

Jun Hyuk Moon, Shu Yang, David J. Pine, and Seung-Man Yang  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9841-9846 (2005)
http://dx.doi.org/10.1364/OPEX.13.009841


View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the construction of diamond photonic crystal structures by the translation of a multi-beam interference pattern. Using phase shift of each beam, the double-exposed interference patterns can be aligned in the [111] direction for a face-centered cubic (FCC) and [210] direction for a body-centered cubic (BCC), respectively, producing diamond D from FCC and BCC-diamond like structure from BCC. The present result shows that the complete bandgap has been retained with slight deviation from ideal diamond symmetry.

© 2005 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:
Research Papers

History
Original Manuscript: October 24, 2005
Revised Manuscript: October 15, 2005
Published: November 28, 2005

Citation
Jun Moon, Shu Yang, David Pine, and Seung-Man Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13, 9841-9846 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9841


Sort:  Journal  |  Reset  

References

  1. S. H. Park, D. Qin, and Y. Xia, "Crystallization of mesoscale particles over large areas," Adv. Mater. 10, 1028-1032 (1998). [CrossRef]
  2. G. M. Gratson, M. J. Xu, and J. A. Lewis, "Microporiodis structures - Direct writing of three-dimensional webs," Nature 428, 386-386 (2004). [CrossRef] [PubMed]
  3. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef] [PubMed]
  4. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices -Micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  5. S. Noda, N. Yamamoto, and A. Sasaki, "New realization method for three-dimensional photonic crystal in optical wavelength region," Jpn. J. Appl. Phys. 35 (7B), L909-L912 (1996). [CrossRef]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  7. M. Maldovan and E. L. Thomas, "Diamond-structured photonic crystals," Nat. Mater. 3 (9), 593-600 (2004). [CrossRef] [PubMed]
  8. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band-structure - The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991). [CrossRef] [PubMed]
  9. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  10. S. H. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, "Design of 3-dimensional photonic crystals at submicron length scales," Appl. Phys. Lett. 65, 1466-1468 (1994). [CrossRef]
  11. O. Toader and S. John, "Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals," Science 292, 1133-1135 (2001). [CrossRef] [PubMed]
  12. M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, "Photonic properties of bicontinuous cubic microphases," Phys. Rev. B 65, 165123 (2002). [CrossRef]
  13. C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, "Triply periodic bicontinuous structures through interference lithography: a level-set approach," J. Opt. Soc. Am. A 20, 948-954 (2003). [CrossRef]
  14. D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102 (2003). [CrossRef]
  15. O. Toader, T. Y. M. Chan, and S. John, "Photonic band gap architectures for holographic lithography," Phys. Rev. Lett. 92 (4), 043905 (2004). [CrossRef] [PubMed]
  16. M. Maldovan, C. K. Ullal, W. C. Carter, and E. L. Thomas, "Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups," Nat. Mater. 2 (10), 664-667 (2003). [CrossRef] [PubMed]
  17. J. H. Moon, S.-M. Yang, D. J. Pine, and W.-S. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004). [CrossRef]
  18. A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A-Pure Appl. Op. 1 (5), L3-L6 (1999). [CrossRef]
  19. J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003). [CrossRef]
  20. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002). [CrossRef]
  21. J. H. Moon, A. Small, G.-R. Yi, S.-K. Lee, W.-S. Chang, D. J. Pine, and S.-M. Yang, "Patterned polymer photonic crystals using soft lithography and holographic lithography," Synth. Met. 148, 99-102 (2005). [CrossRef]
  22. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28 (7), 522-524 (2003). [CrossRef] [PubMed]
  23. N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. in press (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited