OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9869–9880

Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator

Tomoko Shimada, Wataru Watanabe, Sachihiro Matsunaga, Tsunehito Higashi, Hiroshi Ishii, Kiichi Fukui, Keisuke Isobe, and Kazuyoshi Itoh  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9869-9880 (2005)
http://dx.doi.org/10.1364/OPEX.13.009869


View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond laser pulses can be used to selectively disrupt and dissect intracellular organelles. We report on disruption of mitochondria in living HeLa cells using a femtosecond laser oscillator with a repetition rate of 76 MHz. We studied the laser parameters used for disruption. The long-term viability of the cells after disruption of a single mitochondrion was confirmed by the observation of cell division, indicating that intracellular disruption of organelles using a femtosecond laser oscillator can be performed without compromising the long-term cell viability.

© 2005 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Research Papers

History
Original Manuscript: October 18, 2005
Revised Manuscript: October 18, 2005
Published: November 28, 2005

Citation
Tomoko Shimada, Wataru Watanabe, Sachihiro Matsunaga, Tsunehito Higashi, Hiroshi Ishii, Kiichi Fukui, Keisuke Isobe, and Kazuyoshi Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 13, 9869-9880 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9869


Sort:  Journal  |  Reset  

References

  1. B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology (Taylor and Francis, New York, 1997).
  2. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  3. R. L. Amy and R. Storb, “Selective mitochondrial damage by a ruby laser microbeam - an electron microscopic study,” Science 150, 756-757 (1965). [CrossRef] [PubMed]
  4. V. Venugopalan, A. Guerra III, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromaniplation,” Phys. Rev. Lett. 88, 078103 (2002). [CrossRef] [PubMed]
  5. M. W. Berns, W. H. Write, and R. W. Steubing, “Laser microbeam as a tool in cell biology,” Int. Rev. Cytol. 129, 1-44 (1991). [CrossRef] [PubMed]
  6. J. Colombelli, S. W. Grill, and E. H. K. Stelzer, “Ultraviolet diffraction limited nanosurgery of live biological tissues,” Rev. Sci. Instrum. 75, 472-478 (2004). [CrossRef]
  7. J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6, 1093-1102 (2005). [CrossRef] [PubMed]
  8. A. Khodjakov, R. W. Cole, and C. L. Rieder, “A synergy of technologies: Combining laser microsurgery with green fluorescent protein tagging,” Cell. Motil. Cytoskeleton 38, 311-317 (1997). [CrossRef] [PubMed]
  9. E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, “Controlled ablation of microtubules using a picosecond laser,” Biophys. J. 87, 4203-4212 (2004). [CrossRef] [PubMed]
  10. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  11. K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22, 135-136 (1997). [CrossRef] [PubMed]
  12. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. -J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113-115 (1999). [CrossRef]
  13. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763-767 (1999). [CrossRef] [PubMed]
  14. V. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 4, 957-964 (2003). [CrossRef]
  15. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998). [CrossRef]
  16. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, “Femtosecond laser disruption of subcellular organelles in a living cell,” Opt. Express 12, 4203-4213 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4203">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4203</a>. [CrossRef] [PubMed]
  17. N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17-25 (2005).
  18. A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13, 3690- 3696 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3690">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3690</a>. [CrossRef] [PubMed]
  19. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004). [CrossRef] [PubMed]
  20. K. König, “Laser tweezers and multiphoton microscopes in life sciences,” Histochem. Cell Biol. 114, 79-92 (2000). [PubMed]
  21. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819-821 (2001). [CrossRef]
  22. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290-291 (2002). [CrossRef] [PubMed]
  23. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. -L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. USA 102, 1047-1052 (2005). [CrossRef] [PubMed]
  24. L. Sacconi, I. M. Tolić-Nørrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10, 014002 (2005). [CrossRef]
  25. M. Müller, J. Squier, and G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20, 1038-1040 (1995). [CrossRef] [PubMed]
  26. T. Higashi, E. Nagamori, T. Sone, S. Matsunaga, and K. Fukui, “A novel transfection method for mammalian cells using calcium alginate microbeads,” J. Biosci. Bioeng. 97, 191-195 (2004).
  27. T. J. Collins and M. D. Bootman, “Mitochondria are morphologically heterogeneous within cells,” J. Exp. Biol. 206, 1993-2000 (2003). [CrossRef] [PubMed]
  28. C. L. Rieder and R. W. Cole, “Entry into mitosis in vertebrate somatic cells is guarded by a chromosome damage checkpoint that reverses the cell cycle when triggered during early but not late prophase,” J. Cell. Biol. 142, 1013-1022 (1998). [CrossRef] [PubMed]
  29. C. L. Rieder and R. Cole, “Microtubule disassembly delays the G2-M transition in vertebrates,” Curr. Biol. 10, 1067-1070 (2000). [CrossRef] [PubMed]
  30. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophore with data from 690 to 1050nm,” J. Opt. Soc. Am. B. 13, 481-491 (1996). [CrossRef]
  31. G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71-77 (2001). [CrossRef]
  32. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, ”Optics at critical intensity: Applications to nanomorphing,” Poc. Natl. Acad. Sci. USA 101, 5856-5861 (2004). [CrossRef]
  33. A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, “Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold,” Proc. SPIE 4633, 23-37 (2002). [CrossRef]
  34. A. Schnle and S. W. Hell, “Heating by absorption in the focus of an objective lens,” Opt. Lett. 23, 325-327 (1998). [CrossRef]
  35. H. Oehring, I. Riedmann, P. Fisher, K. J. Halbhuber, and K. König, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22, 263- 270 (2000). [CrossRef] [PubMed]
  36. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. Halbhuber, “Femtosecond near-infrared laser pulse elicit generation of reactive oxygen species in mammalian cells leading to apotosis-like death,” Exp. Cell Res. 263, 88-97 (2001). [CrossRef] [PubMed]
  37. A. Musacchio and K. G. Hardwick, “The spindle checkpoint: structural insights into dynamic signaling,” Nat. Rev. Mol. Cell Biol. 3, 731-741 (2002). [CrossRef] [PubMed]
  38. D. Arnoult, A. Grodet, Y. -J. Lee, J. Estaquier, and C. Blackstone, “Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation,” J. Biol. Chem. 280, 35742-35750 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited