OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9909–9915

Room temperature slow light in a quantum-well waveguide via coherent population oscillation

Phedon Palinginis, Forrest Sedgwick, Shanna Crankshaw, Michael Moewe, and Connie J. Chang-Hasnain  »View Author Affiliations

Optics Express, Vol. 13, Issue 24, pp. 9909-9915 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report room temperature demonstration of slow light propagation via coherent population oscillation (CPO) in a GaAs quantum well waveguide. Measurements of the group delay of an amplitude modulated signal resonant with the heavy-hole exciton transition reveal delays as long as 830 ps. The measured bandwidth, which approaches 100 MHz, is related to the lifetime of the photoexcited electron-hole (e-h) plasma as expected for a CPO process.

© 2005 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Research Papers

Original Manuscript: September 7, 2005
Revised Manuscript: September 6, 2005
Published: November 28, 2005

Phedon Palinginis, Forrest Sedgwick, Shanna Crankshaw, Michael Moewe, and Connie Chang-Hasnain, "Room temperature slow light in a quantum-well waveguide via coherent population oscillation," Opt. Express 13, 9909-9915 (2005)

Sort:  Journal  |  Reset  


  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, S. L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884-1897.
  2. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev.Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594-598 (1999). [CrossRef]
  4. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291 (2004). [CrossRef] [PubMed]
  5. P. Palinginis, H. Wang, “Coherent Raman resonance from electron spin coherence in GaAs quantum wells,” Phys. Rev. B 70, 153007 (2004). [CrossRef]
  6. S. Sarkar, P. Palinginis, P. C. Ku, C. J. Chang-Hasnain, N. H. Kwong, R. Binder, H. Wang, “Inducing electron spin coherence in GaAs quantum well waveguides: Spin coherence without spin precession,” Phys. Rev. B 72, 35343 (2005). [CrossRef]
  7. P. Palinginis, S. Crankshaw, F. Sedgwick, E. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 111702 (2005) [CrossRef]
  8. D. S. Chemla, D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, p 1155 (1985). [CrossRef]
  9. M. Sargent III, “Spectroscopic techniques based on Lamb’s laser theory,” Phys. Rep. 43, 223 (1978). [CrossRef]
  10. M. S. Bigelow, N. N. Lepeshkin, R.W. Boyd, “Ultra-slow and superluminal light propagation in solids at room temperature,” J. Cond. Matt. Phys. 16, 1321 (2004). [CrossRef]
  11. H. Wang, J. T. Remillard, M. D. Webb, D. G. Steel, J. Pamulapati, J. Oh, and P. K. Bhattacharya, “High-resolution laser spectroscopy of relaxation and the excitation lineshape of excitons in GaAs quantum well structures,” Surf. Sci. 228, 69 (1990). [CrossRef]
  12. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, H. Ohno, “Spin relaxation in (110) GaAs quantum wells,” Phys. Rev. Lett. 83, 4196 (1999). [CrossRef]
  13. D. Dahan, G. Eisenstein, “Tunable all-optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all-optical buffering,” Opt. Express 13, 6234 (2005) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited