OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9916–9921

Integrated microfluidic variable optical attenuator

Lin Zhu, Yanyi Huang, and Amnon Yariv  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9916-9921 (2005)
http://dx.doi.org/10.1364/OPEX.13.009916


View Full Text Article

Enhanced HTML    Acrobat PDF (1558 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricate and measure a microfluidic variable optical attenuator which consists of an optical waveguide integrated with a microfluidic channel. An opening is introduced in the upper cladding of the waveguide in order to facilitate the alignment and bonding of the microfluidic channel. By using fluids with different refractive indices, the optical output power is gradually attenuated. We obtain a maximum attenuation of 28 dB when the fluid refractive index changes from 1.557 to 1.584.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

History
Original Manuscript: October 24, 2005
Revised Manuscript: October 24, 2005
Published: November 28, 2005

Citation
Lin Zhu, Yanyi Huang, and Amnon Yariv, "Integrated microfluidic variable optical attenuator," Opt. Express 13, 9916-9921 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9916


Sort:  Journal  |  Reset  

References

  1. B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10, 1262-1264 (1998). [CrossRef]
  2. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382-383 (2002). [CrossRef]
  3. T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC type compact variable optical attenuator for photonic transport network,” Electron. Lett. 34, 264–265 (1998). [CrossRef]
  4. M. Lenzi, S. Tebaldini, D. D. Mola, S. Brunazzi, and L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999). [CrossRef]
  5. G. Z. Xiao, Z. Zhang, and C. P. Grover, “A variable optical attenuator based on a straight polymer–silica hybrid channel waveguide,” IEEE Photon. Technol. Lett. 16, 2511-2513 (2004). [CrossRef]
  6. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179-184 (2002). [CrossRef]
  7. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett. 79, 3191-3193 (2004). [CrossRef]
  8. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294-4296 (2004). [CrossRef]
  9. C. Grillet, P. Domachuk, V. Ta'eed, E. Magi. J. A. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5440>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5440</a>. [CrossRef] [PubMed]
  10. P. Domachuk, M. Cronin-Golomb, B. J. Eggleton, S. Mutzenich, G. Rosengarten, and A. Mitchell, “Application of optical trapping to beam manipulation in optofluidics,” Opt. Express 13, 7265-7275 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7265>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7265</a>. [CrossRef] [PubMed]
  11. 11. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnology 17, pp. 1109–1111 (1999). [CrossRef] [PubMed]
  12. S. Balslev and A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13, 344-351 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-344>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-344</a>. [CrossRef] [PubMed]
  13. M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 1348-1354 (2005).
  14. J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000). [CrossRef] [PubMed]
  15. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246–6251 (2001). [CrossRef]
  16. V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonics Technol. Lett. 16, 1525-1527 (2004). [CrossRef]
  17. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998). [CrossRef]
  18. Y. Huang, G.T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85, 3005-3007 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited